forked from arbit3rr/NARX-Transformer-SoH
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
88 lines (71 loc) · 3.56 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset
def load_NASA(folder, num_cycles, split_ratio, scale_data=True):
battery_dict = load_raw_data(folder=folder, scale_data=True)
battery_data = []
for battery_type in battery_dict:
for i in range(len(battery_dict[battery_type]['data'])-num_cycles+1):
sequences = battery_dict[battery_type]['data'][i:i+num_cycles]
capacities = battery_dict[battery_type]['cap'][i:i+num_cycles]
battery_data.append([battery_type,sequences,capacities])
train_data, test_data = sequential_train_test_split(battery_data, split_ratio)
train_dataset, test_dataset = BatteryDataset(train_data), BatteryDataset(test_data)
return train_dataset, test_dataset
def load_raw_data(folder, scale_data=True):
charge_data = pd.read_csv(folder+'/charge_data.csv')
data_x = np.load(folder+'/data_x.npy')
data_y = np.load(folder+'/data_y.npy')
if scale_data:
sc_voltage = MinMaxScaler(feature_range=(-1,1))
sc_current = MinMaxScaler(feature_range=(-1,1))
sc_temp = MinMaxScaler(feature_range=(-1,1))
data_x[:,:,0] = sc_voltage.fit_transform(data_x[:,:,0])
data_x[:,:,1] = sc_current.fit_transform(data_x[:,:,1])
data_x[:,:,2] = sc_temp.fit_transform(data_x[:,:,2])
battery_dict = {}
for name in np.unique(charge_data['Battery_id']):
battery_dict[name] = {}
battery_dict[name]['data'] = data_x[charge_data[charge_data['Battery_id']==name].index]
battery_dict[name]['cap'] = data_y[charge_data[charge_data['Battery_id']==name].index]
idx,_,_ = np.where(np.isnan(battery_dict[name]['data']))
battery_dict[name]['data'] = np.delete(battery_dict[name]['data'], idx, axis=0)
battery_dict[name]['cap'] = np.delete(battery_dict[name]['cap'], idx, axis=0)
return battery_dict
def sequential_train_test_split(battery_data, split_ratio):
battery_data = np.array(battery_data, dtype=object)
battery_types = battery_data[:,0]
train_data = []
test_data = []
for battery_type in np.unique(battery_types):
one_type_data = battery_data[battery_data[:,0] == battery_type]
one_type_train, one_type_test = train_test_split(one_type_data, test_size=split_ratio, shuffle=False)
train_data.append(one_type_train)
test_data.append(one_type_test)
train_data = np.vstack(train_data)
test_data = np.vstack(test_data)
return train_data, test_data
class BatteryDataset(Dataset):
def __init__(self, battery_data):
self.battery_data = battery_data
def __len__(self):
return len(self.battery_data)
def __getitem__(self, index):
name, data, caps = self.battery_data[index]
return data, caps
##################################### dev #####################################
class old_BatteryDataset(Dataset):
def __init__(self, battery_dict, num_cycles):
self.battery_data = []
for battery_type in battery_dict:
for i in range(len(battery_dict[battery_type]['data'])-num_cycles+1):
sequences = battery_dict[battery_type]['data'][i:i+num_cycles]
capacities = battery_dict[battery_type]['cap'][i:i+num_cycles]
self.battery_data.append([battery_type,sequences,capacities])
def __len__(self):
return len(self.battery_data)
def __getitem__(self, index):
name, data, caps = self.battery_data[index]
return data, caps