-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaxFlow_EdmondsKarp.cpp
156 lines (132 loc) · 4.13 KB
/
MaxFlow_EdmondsKarp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
//
// MaxFlow_EdmundsKarp
//
// Created by Alex on 11.09.15.
//
#include "MaxFlow_EdmundsKarp.h"
using std::vector;
using std::queue;
Graph::Graph(vector< vector <int> > & edge_info,int get_num_of_vertex):
last_max_flow(-1),
num_of_vertex(get_num_of_vertex)
{
edges.resize(edge_info.size());
graph.resize(get_num_of_vertex);
network.resize(get_num_of_vertex);
for (int i = 0; i < edge_info.size(); ++ i)
{
edges[i].from = edge_info[i][0]-1;
edges[i].to = edge_info[i][1]-1;
edges[i].capacity = edge_info[i][2];
graph[edges[i].from].push_back(i);
}
}
int Graph::GetLastCountedMaxFlow() const {return last_max_flow;}
void Graph::MakeNewNetwork()
{
for(int k = 0; k < graph.size(); ++k)
{
network[k] = graph[k];
}
for(int k = 0; k < edges.size(); ++k)
{
edges[k].virtual_capacity = edges[k].capacity;
if(edges[k].virtual_capacity < 0) edges[k].virtual_capacity = 0;
// edges[k].flow = 0;
edges[k].back_edge = -1;
int to = edges[k].to;
int from = edges[k].from;
for(int i = 0; i < network[to].size(); ++i) // to fast update back edge
{
if(edges[network[to][i]].to == from)
{
edges[k].back_edge = network[to][i];
edges[network[to][i]].back_edge = k;
}
}
}
}
void Graph::FindMaxFlow(int start,int final)
{
--start;
--final;
last_max_flow = 0;
if(start < 0 || final > num_of_vertex - 1) return;
MakeNewNetwork();
bool is_new_path = true;
while(true)
{
vector<int> ancestor(num_of_vertex,-1);
ancestor[start] = -2;
is_new_path = BfsFindPath(ancestor,start, final);
if(!is_new_path) break;
/*find minimal residual capacity*/
int min_cap = -1;
for(int cur = final;;)
{
int e_rev = ancestor[cur];
if(e_rev == -2) break; // is start vertex
if(min_cap == -1) min_cap = edges[e_rev].virtual_capacity; // first edge
else if(edges[e_rev].virtual_capacity < min_cap)
{
min_cap = edges[e_rev].virtual_capacity;
}
cur = edges[e_rev].from;
}
/*update edges and edges capacity*/
for(int cur = final;;)
{
int e_rev = ancestor[cur];
if(e_rev == -2) break; // is start vertex
edges[e_rev].virtual_capacity -= min_cap;
int back_edge = edges[e_rev].back_edge;
if(back_edge == -1)
{
Edge new_back_edge;
new_back_edge.from = edges[e_rev].to;
new_back_edge.to = edges[e_rev].from;
new_back_edge.virtual_capacity = min_cap;
new_back_edge.back_edge = e_rev;
new_back_edge.capacity = -1; //it's virtual edge
edges.push_back(new_back_edge);
int index_of_new_edge = (int)edges.size()-1;
network[new_back_edge.from].push_back(index_of_new_edge);
}
else
{
edges[back_edge].virtual_capacity += min_cap;
}
cur = edges[e_rev].from;
}
last_max_flow += min_cap; //update flow
}
}
bool Graph::BfsFindPath(vector<int> & ancestor,int start, int final)
{
queue<int> vque;
vque.push(start);
bool is_end = false;
while(vque.size() > 0)
{
int cur = vque.front();
vque.pop();
for(int i = 0; i < network[cur].size();++i)
{
int e_ind = network[cur][i];
if(edges[e_ind].virtual_capacity == 0) continue; // this edge is not from residual network
if(ancestor[edges[e_ind].to] == -1)
{
ancestor[edges[e_ind].to] = e_ind;
vque.push(edges[e_ind].to);
}
if(edges[e_ind].to == final)
{
is_end = true;
break;
}
}
if(is_end) break;
}
if(is_end) return true;
return false;
}