-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathsnake.cpp
211 lines (176 loc) · 6.83 KB
/
snake.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// Snakes (active contours) implemented with OpenCV.
//
// Author: Alessandro Gentilini - 2014
//
// Following the Bayesian approach described in "17.2 Snakes" of:
//
// Prince, S.J.D.
// [*Computer Vision: Models Learning and Inference*](http://web4.cs.ucl.ac.uk/staff/s.prince/book/book.pdf),
// Cambridge University Press, 2012
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <cmath>
#include <string>
std::string getImgType(int imgTypeInt)
{
int numImgTypes = 35; // 7 base types, with five channel options each (none or C1, ..., C4)
int enum_ints[] = {CV_8U, CV_8UC1, CV_8UC2, CV_8UC3, CV_8UC4,
CV_8S, CV_8SC1, CV_8SC2, CV_8SC3, CV_8SC4,
CV_16U, CV_16UC1, CV_16UC2, CV_16UC3, CV_16UC4,
CV_16S, CV_16SC1, CV_16SC2, CV_16SC3, CV_16SC4,
CV_32S, CV_32SC1, CV_32SC2, CV_32SC3, CV_32SC4,
CV_32F, CV_32FC1, CV_32FC2, CV_32FC3, CV_32FC4,
CV_64F, CV_64FC1, CV_64FC2, CV_64FC3, CV_64FC4};
std::string enum_strings[] = {"CV_8U", "CV_8UC1", "CV_8UC2", "CV_8UC3", "CV_8UC4",
"CV_8S", "CV_8SC1", "CV_8SC2", "CV_8SC3", "CV_8SC4",
"CV_16U", "CV_16UC1", "CV_16UC2", "CV_16UC3", "CV_16UC4",
"CV_16S", "CV_16SC1", "CV_16SC2", "CV_16SC3", "CV_16SC4",
"CV_32S", "CV_32SC1", "CV_32SC2", "CV_32SC3", "CV_32SC4",
"CV_32F", "CV_32FC1", "CV_32FC2", "CV_32FC3", "CV_32FC4",
"CV_64F", "CV_64FC1", "CV_64FC2", "CV_64FC3", "CV_64FC4"};
for(int i=0; i<numImgTypes; i++)
{
if(imgTypeInt == enum_ints[i]) return enum_strings[i];
}
return "unknown image type";
}
typedef std::vector<cv::Point2d> W_t;
typedef float distance_t;
template< typename T >
struct CPP_TYPE_TO_OPENCV_IMG_TYPE
{
CPP_TYPE_TO_OPENCV_IMG_TYPE() { assert(32==8*sizeof(distance_t)); }
};
template<> struct CPP_TYPE_TO_OPENCV_IMG_TYPE<distance_t> { enum { type = CV_32FC1 }; };
double distance_from_edge( const cv::Mat& distance_img, const W_t::value_type& w)
{
if ( w.y >= distance_img.rows || w.x >= distance_img.cols ) {
double minVal;
double maxVal;
cv::Point minLoc;
cv::Point maxLoc;
cv::minMaxLoc( distance_img, &minVal, &maxVal, &minLoc, &maxLoc );
std::cout << "rotto!!!";
return (pow(w.y,2)+pow(w.x,2))*maxVal;
}
return distance_img.at<distance_t>(w.y,w.x);
}
double vector_norm2(const W_t::value_type& p)
{
return sqrt(pow(p.x,2) + pow(p.y,2));
}
// Formula 17.5
double space(const W_t& W, const size_t& N, const size_t& n)
{
double consecutive_distance_average = 0;
for( size_t i = 1; i<= N; i++ ) {
consecutive_distance_average += vector_norm2(W[i]-W[i-1]);
}
consecutive_distance_average /= N;
double result = -pow(consecutive_distance_average-vector_norm2(W[n]-W[n-1]),2);
//std::cout << "space\t" << result << "\n";
return result;
}
// Formula 17.6
double curve(const W_t& W, const size_t& n)
{
double result = -pow(vector_norm2(W[n-1]-2*W[n]+W[n+1]),2);
//std::cout << "curve\t" << result << "\n";
return result;
}
// Formula 17.4
double prior(const W_t& W, const size_t& N, const double& alpha, const double& beta)
{
double result = 1;
for ( size_t n = 1; n <= N; n++ ) {
result *= exp(alpha*space(W,N,n)+beta*curve(W,n));
}
//std::cout << "prior\t" << result << "\n";
return result;
}
// Formula 17.3
double likelihood(const cv::Mat& distance_img, const W_t& W, const size_t& N)
{
double result = 1;
for ( size_t n = 1; n <= N; n++ ) {
double d = distance_from_edge(distance_img,W[n]);
result *= exp(-pow(d,2));;
//std::cout << "likelihood d\t" << d << "\t" << -pow(d,2) << "\n";
}
return result;
}
// Formula 17.7
double cost(const W_t& W, const cv::Mat& distance_img, const size_t& N,const double& alpha, const double& beta)
{
return log(likelihood(distance_img,W,N)) + log(prior(W,N,alpha,beta));
}
int main( int argc, char** argv )
{
if( argc != 2)
{
std::cout <<" Usage: display_image ImageToLoadAndDisplay" << "\n";
return -1;
}
cv::Mat image;
image = cv::imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
if(! image.data )
{
std::cout << "Could not open or find the image" << "\n";
return -1;
}
//cv::namedWindow( "image", cv::WINDOW_AUTOSIZE );
cv::namedWindow( "image" );
cv::imshow( "image", image );
cv::Mat edges;
cv::Canny(image,edges,100,200);
edges = 255-edges;
cv::namedWindow( "edges", cv::WINDOW_AUTOSIZE );
cv::imshow( "edges", edges );
cv::Mat distance(edges.rows,edges.cols,CPP_TYPE_TO_OPENCV_IMG_TYPE<distance_t>::type);
cv::distanceTransform(edges,distance, CV_DIST_L2, CV_DIST_MASK_PRECISE);
std::ostringstream oss;
oss << distance;
std::cout << getImgType(distance.type()) << oss.str().substr(0,70) << "\n";
cv::Mat normalized_dist;
cv::normalize(distance.clone(), normalized_dist, 0.0, 1.0, cv::NORM_MINMAX);
cv::namedWindow( "distance", cv::WINDOW_AUTOSIZE );
cv::imshow( "distance", normalized_dist );
std::vector<cv::Vec3f> circles;
cv::HoughCircles( edges, circles, CV_HOUGH_GRADIENT, 1, 10, 200, 25, 0, 0 );
//std::cout << circles.size() << "\n";
//for( size_t i = 0; i < circles.size(); i++ )
cv::Mat hough = image.clone();
// for( size_t i = 0; i < 1; i++ )
// {
// Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
// int radius = cvRound(circles[i][2]);
// circle( hough, center, 3, Scalar(255,255,255));
// circle( hough, center, radius, Scalar(255,255,255));
// }
const size_t selected_circle = 1;
cv::Point2d w_center(circles[selected_circle][0],circles[selected_circle][1]);
double radius = circles[selected_circle][2];
const size_t N = 30;
W_t W(N+2);
for ( size_t i = 1; i <= N; i++ ) {
const double a = i*2*M_PI/N;
W[i].x = w_center.x + radius*cos(a);
W[i].y = w_center.y + radius*sin(a);
}
W[0] = W[N];
W[N+1] = W[1];
for ( size_t i = 1; i <= N; i++ ) {
circle( hough, W[i], 3, cv::Scalar(255,255,255));
}
cv::namedWindow( "circles", cv::WINDOW_AUTOSIZE );
cv::imshow( "circles", hough );
double alpha = 0.5;
double beta = 0.5;
std::cout << "prior\t" << prior(W,N,alpha,beta) << "\n";
std::cout << "likelihood\t" << likelihood(distance,W,N) << "\n";
std::cout << "cost\t" << cost(W,distance,N,alpha,beta) << "\n";
cv::waitKey(0);
return 0;
}