-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmly.py
688 lines (515 loc) · 17.3 KB
/
mly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
import sympy
from sympy import *
from sympy.plotting import plot
import numpy as np
from numpy import linalg as LA
from numpy.linalg import inv
import math
def get(tpe,life):
with open(""+tpe+""+life+".txt", "r") as x:
a1reader=csv.reader(x)
a1list= []
for row in a1reader:
if len(row)!=0:
a1list=a1list + [row]
return a1list
x.close()
def make_A_matrix(number_of_floors,mass_of_floor,floor_string_constents):
pass
promat=[""]*number_of_floors
for x in range(number_of_floors):
promat[x]=[0]*number_of_floors
promat[0][0]=-(floor_string_constents[0]+floor_string_constents[1])/mass_of_floor[0]
promat[0][1]=(floor_string_constents[1])/mass_of_floor[0]
promat[number_of_floors-1][number_of_floors-1]=-(floor_string_constents[number_of_floors-1]+floor_string_constents[number_of_floors])/mass_of_floor[number_of_floors-1]
promat[number_of_floors-1][number_of_floors-2]+=(floor_string_constents[number_of_floors-1])/mass_of_floor[number_of_floors-1]
for x in range(number_of_floors-2):
promat[x+1][0+x]=(floor_string_constents[x+1])/mass_of_floor[x+1]
promat[x+1][1+x]=-(floor_string_constents[x+1]+floor_string_constents[x+2])/mass_of_floor[x+1]
promat[x+1][2+x]=(floor_string_constents[x+2])/mass_of_floor[x+1]
commat=Matrix(promat)
return commat
def floor_duble_eqations_F(number_of_floors,floor_string_constents,floor,mass_of_floor):
pass
floor_dubble=[""]*number_of_floors
floor_dubble[0]=(-(floor_string_constents[0]+floor_string_constents[1])*floor[0]+floor_string_constents[1]*floor[1])/mass_of_floor[0]+(force_form_eq_on_flor[0])/mass_of_floor[0]
floor_dubble[number_of_floors-1]=-(floor_string_constents[number_of_floors]+floor_string_constents[number_of_floors-1])*floor[number_of_floors-1]
floor_dubble[number_of_floors-1]+=(floor_string_constents[number_of_floors-1])*floor[number_of_floors-2]
floor_dubble[number_of_floors-1]=floor_dubble[number_of_floors-1]/mass_of_floor[number_of_floors-1]
floor_dubble[number_of_floors-1]+=(force_form_eq_on_flor[number_of_floors-1])/mass_of_floor[number_of_floors-1]
#print(mass_of_floor[number_of_floors-1])
for x in range(number_of_floors-2):
floor_dubble[x+1]=floor_string_constents[x+1]*floor[x]
floor_dubble[x+1]+=-(floor_string_constents[x+1]+floor_string_constents[x+2])**floor[x+1]
floor_dubble[x+1]+=floor_string_constents[x+2]*floor[x+2]
floor_dubble[x+1]=floor_dubble[x+1]/mass_of_floor[x+1]
floor_dubble[x+1]+=force_form_eq_on_flor[x+1]/mass_of_floor[x+1]
return floor_dubble
def getmatrix_A_F(number_of_floors,eval_A_mat):
evl_matrix=np.zeros((number_of_floors, number_of_floors))
for x in range(number_of_floors):
for y in range(number_of_floors):
evl_matrix[x][y]=eval_A_mat[x*number_of_floors+y]
return evl_matrix
def eval_matrix_A(commat,floor_string_constents,mass_of_floor,valmass):
for x in range(number_of_floors):
commat=commat.subs(floor_string_constents[x], valk[x]).subs(mass_of_floor[x], valmass[x])
commat=commat.subs(floor_string_constents[number_of_floors], valk[number_of_floors])
return commat
def powerfunc_F(powerF_2_1mat):
powerF_2taylor=[0]*len(powerF_2_1mat[0])
for x in range(len(powerF_2_1mat)):
for y in range(len(powerF_2_1mat[0])):
powerF_2taylor[y]+=powerF_2_1mat[x][y]*(time**x)
return powerF_2taylor
def powerfunc_withmax_F(powerF_2_1mat,mx):
powerF_2taylor=[0]*len(powerF_2_1mat[0])
if len(powerseries)<=mx:
mx=len(powerF_2_1mat)
for x in range(mx):
for y in range(len(powerF_2_1mat[0])):
powerF_2taylor[y]+=powerF_2_1mat[x][y]*(time**x)
return powerF_2taylor
def sol_f_1_l_F(number_of_floors,egonval):
pass
f_1_l=[0]*number_of_floors
for x in range(number_of_floors):
if egonval[0][x]>=0:
add=con2[x]*sinh(math.sqrt(abs(egonval[0][x]))*(time))+con1[x]*cosh(math.sqrt(abs(egonval[0][x]))*(time))
else:
add=con2[x]*sin(math.sqrt(abs(egonval[0][x]))*time)+con1[x]*cosh(math.sqrt(abs(egonval[0][x]))*time)
for y in range(number_of_floors):
f_1_l[y]+=egonval[1][y][x]*add
return Matrix(f_1_l)
def sol_f_1rows_l_F(number_of_floors,egonval):
#print(egonval[1][3][3])
add=0
f_1_l=[0]*number_of_floors
cont1=[""]*number_of_floors
cont2=[""]*number_of_floors
for y in range(number_of_floors):
vec=[0]*number_of_floors
for x in range(number_of_floors):
vec[x]=float(egonval[1][x][y])
cont1[y] = Symbol('c'+str(2*y+1)+"")
cont2[y] = Symbol('c'+str(2*y+2)+"")
if egonval[0][y]>=0:
add=cont2[y]*sinh(math.sqrt(abs(egonval[0][y]))*time)+cont1[y]*cosh(math.sqrt(abs(egonval[0][x]))*time)
else:
add=cont2[y]*sin(math.sqrt(abs(egonval[0][y]))*time)+cont1[y]*cos(math.sqrt(abs(egonval[0][y]))*time)
f_1_l[y]=[Matrix(vec),add]
return f_1_l
def get_invA_F(evl_matrix):
return inv(evl_matrix)
def get_egonvalA_F(evl_matrix):
return LA.eig(evl_matrix)
def get_cosseries_F(number_of_floors,func):
pass
cos_series=[""]*1
for x in range(len(cos_series)):
cos_series[x]=[2,func(x,number_of_floors)]
return cos_series
def getnubmer_F():
while 1:
pass
number=input("enter a number :")
try:
int(number)
return int(number)
except Exception as e:
pass
#print("not a number")
def getfloat_F():
while 1:
pass
number=input("enter a float :")
try:
float(number)
return float(number)
except Exception as e:
pass
#print("not a number")
def f_vec_F(number_of_floors):
difvect=[""]*number_of_floors
for x in range(number_of_floors):
difvect[x]=force_form_eq_on_flor[x]
difmat=Matrix(difvect)
return difmat
def fl_vec_F(number_of_floors,floor):
pass
florvec=[""]*number_of_floors
for x in range(number_of_floors):
florvec[x]=floor[x]
return Matrix(florvec)
def fldp_vec_F(number_of_floors,floordb):
pass
florvec=[""]*number_of_floors
for x in range(number_of_floors):
florvec[x]=floordb[x]
return Matrix(florvec)
def fldp_vec_F2(number_of_floors,floordb):
pass
florvec=[""]*number_of_floors
for x in range(number_of_floors):
florvec[x]=[floordb[x]]
return Matrix(florvec)
def vel_0_F(number,powerseries,powerF_2_1mat):
hold=np.zeros(len(powerseries[0]))
for x in range(len(powerseries[0])):
hold[x]=powerseries[1][x]+powerF_2_1mat[1][x]
#powerF_2_1mat[x][1]
return hold
def pos_0_F(number,powerseries,powerF_2_1mat):
hold=np.zeros(len(powerseries[0]))
for x in range(len(powerseries[0])):
hold[x]=powerseries[0][x]+powerF_2_1mat[0][x]
return hold
def sub_0_vec_F(number):#pos initial
vec=np.zeros(number)
for x in range(number):
vec[x]=0
return vec
def sub_1_vec_F(number):#vel inital
vec=np.zeros(number)
for x in range(number):
vec[x]=100
return vec
def get_m_vec(number_of_floors):
vec=np.zeros(number_of_floors)
for x in range(number_of_floors):
print("mass value ",x)
vec[x]=getfloat_F()
print()
return vec[x]
def get_k_vec(number_of_floors):
vec=np.zeros(number_of_floors+1)
for x in range(number_of_floors):
print("spring consent of floor ",x)
vec[x]=getfloat_F()
vec[number_of_floors]=0
print()
return vec[x]
def get_powerseries_F(number_of_floors,func):
pass
powerseries=[""]*100
for x in range(len(powerseries)):
powerseries[x]=func(x,number_of_floors)
return powerseries
def powervec(number_in_series,number_of_floors):#power series func
vewc=np.zeros((number_of_floors))
for x in range(number_of_floors):
if number_in_series//2==number_in_series/2:
vewc[x]=-1/math.factorial(1+number_in_series)
if number_in_series//4==number_in_series/4:
vewc[x]=(1/math.factorial(1+number_in_series))
return vewc
def make_eqation_F(number_of_floors,egonval,convec,y):
row=0
for x in range(number_of_floors):
if egonval[0][x]>=0:
add=convec[2*x+0]*sinh(math.sqrt(abs(egonval[0][x]))*(time))+convec[0][2*x+0]*cosh(math.sqrt(abs(egonval[0][x]))*(time))
else:
#print(convec[0])
add=convec[2*x+0]*sin(math.sqrt(abs(egonval[0][x]))*time)+convec[2*x+1]*cos(math.sqrt(abs(egonval[0][x]))*(time))
row=row+add*egonval[1][y][x]
row+=f_2_l_taylor[y]
print(row)
print(row.subs(time,0))
plot(row, (time, 0, 50))
return latex(plot(row, (time, 0, 50)))
#number_of_floors=getnubmer_F()
print("number of floors")
number_of_floors=int(getfloat_F())
add=""
add+="\documentclass{article}\n"
add+="\\title{Project}\n"
add+="\date{2018-05-01}\n"
add+="\\author{Alex haussmann}\n"
add+="\\usepackage{amsmath}\n"
add+="\\begin{document}\n"
add+="\pagenumbering{gobble}\n"
add+="\maketitle\n"
add+="\\newpage\n"
add+=" \pagenumbering{arabic}\n"
add+="\paragraph{}\n"
time=Symbol('t')
#floor vecor
floor=[""]*number_of_floors
for x in range(number_of_floors):
floor[x] = Symbol('fl'+str(x+1)+"")
floordb=[""]*number_of_floors
for x in range(number_of_floors):
floordb[x] = Symbol('fl_{'+str(x+1)+"}''")
floor_string_constents=[""]*(number_of_floors+1)
for x in range(number_of_floors+1):
floor_string_constents[x] = Symbol('k'+str(x+1)+"")
#print(floor_string_constents[0])
force_form_eq_on_flor=[""]*number_of_floors
for x in range(number_of_floors):
force_form_eq_on_flor[x] = Symbol('f'+str(x+1)+"")
# floor masses
mass_of_floor=[""]*number_of_floors
for x in range(number_of_floors):
mass_of_floor[x] = Symbol('m'+str(x+1)+"")
# creating the matrix A
add+=" floor pos=fl\n"
add+="\paragraph{}\n"
add+=" mass of floot=m\n"
add+="\paragraph{}\n"
add+=" external force on floor = f\n"
add+="\paragraph{}\n"
add+=" spring consent on floor = k\n"
add+="\paragraph{}\n"
floor_duble_eq=floor_duble_eqations_F(number_of_floors,floor_string_constents,floor,mass_of_floor)
if input("display eqations? y/n").lower()=="y":
add+="\paragraph{}\n"
add+="\paragraph{}\n"
add+="\paragraph{}\n"
add+="the govering eqations are\n"
for x in range(len(floor_duble_eq)):
#print("fl"+str(x+1)+"''=")
pprint(floor_duble_eq[x])
add+="\paragraph{}\n"
add+="$$"+"fl''_{"+str(x+1)+"} = "+latex(floor_duble_eq[x])+"$$\n"
#print()
if input("explain eqations? y/n").lower()=="y":
#print("whatever the expaination is")
add+="\paragraph{}\n"
add+="whatever the expaination is\n"
add+="\paragraph{}\n"
add+="\paragraph{}\n"
add+="\paragraph{}\n"
##this is where the vectors are
flvec=fl_vec_F(number_of_floors,floor)
add+="$$"+"\\vec{fl}"+" = "+latex(flvec)+"$$\n"
#input("contue")
flvecdp=fldp_vec_F(number_of_floors,floordb)
add+="$$"+"\\vec{fl}''"+" = "+latex(flvecdp)+"$$\n"
#input("contue")fldp_vec_F2
add+="\paragraph{}\n"
add+="\paragraph{}\n"
add+="\paragraph{}\n"
#A=
commat=make_A_matrix(number_of_floors,mass_of_floor,floor_string_constents)
add+="$$"+latex(commat)+"$$\n"
#add+=latex(commat)+"\n"
#if input("explain how matrix is generated? y/n").lower()=="y":
# print("whatever the expaination is")
#input("continue")
add+="\paragraph{}\n"
#input("continue")
add+="$$"+"\\vec{f}"+" = "+latex(f_vec_F(number_of_floors))+"$$\n"
add+="\paragraph{}\n"
add+="$$"+"\\vec{fl''}"+" = "+"A*\\vec{fl}+\\vec{f}"+"$$\n"
valk=[0]*(number_of_floors+1)
#lip=input("imput k line my line y else all with be the same")
lip="n"
if lip.lower()=="y":
for x in range(number_of_floors):
#print("k"+str(x+1)+"")
valk[x]=getfloat_F()
else:
#kallv=getfloat_F()
kallv=1
for x in range(number_of_floors):
valk[x]=kallv
valmass=[0]*number_of_floors
#lip=input("imput m line my line y else all with be the same")
lip="n"
if lip.lower()=="y":
for x in range(number_of_floors):
#print("m"+str(x+1)+"")
valmass[x]=getfloat_F()
else:
#kallv=getfloat_F()
kallv=1
for x in range(number_of_floors):
valmass[x]=kallv
valmass[x]=get_m_vec(number_of_floors)
valmass[x]=get_k_vec(number_of_floors)
add+="\paragraph{}\n"
add+="we have in this example set\n"
add+="$$"+"\\vec{k}"+" = "+latex(Matrix(valk))+"$$\n"
add+="\paragraph{}\n"
add+="$$"+"\\vec{m}"+" = "+latex(Matrix(valmass))+"$$\n"
add+="\paragraph{}\n"
add+="\paragraph{}\n"
floor_part1=[""]*number_of_floors
floor_part2=[""]*number_of_floors
floordb_part1=[""]*number_of_floors
floordb_part2=[""]*number_of_floors
for x in range(number_of_floors):
floor_part1[x] = Symbol('f_1_l'+str(x+1)+"")
floor_part2[x] = Symbol('f_2_l'+str(x+1)+"")
floordb_part1[x] = Symbol('f_1_l\'\''+str(x+1)+"")
floordb_part2[x] = Symbol('f_2_l\'\''+str(x+1)+"")
add+="\paragraph{}\n"
add+="now we solve the brake the problem we sovle\n"
add+="\paragraph{}\n"
add+="$$"+"\\vec{fl}"+" = "+"\\vec{fl_{1}}+\\vec{fl_{2}}"+"$$\n"
add+="\paragraph{}\n"
add+="$$"+"\\vec{fl_{1}}''"+" = "+"A*\\vec{fl_{1}}"+"$$\n"
add+="generaly and\n"
add+="\paragraph{}\n"
add+="$$"+"\\vec{fl_{2}}''"+" = "+"A*\\vec{fl_{2}}+\\vec{f}"+"$$\n"
add+="spisicifly\n"
add+="\paragraph{}\n"
add+="the evaluated matrix A is\n"
add+="\paragraph{}\n"
eval_A_mat=eval_matrix_A(commat,floor_string_constents,mass_of_floor,valmass)
add+="$$"+latex(eval_A_mat)+"$$"
evl_matrix=getmatrix_A_F(number_of_floors,eval_A_mat)
egonval=LA.eig(evl_matrix)
add+="\paragraph{}\n"
add+="\paragraph{}\n"
add+="\paragraph{}\n"
add+="they igon vector value pairs are\n"
for x in range(len(egonval[0])):
vac2=[""]*len(egonval[0])
for y in range(len(egonval[0])):
vac2[y]=egonval[1][y][x]
add+="$$"+str(egonval[0][x])+"+"+latex(Matrix(vac2))+"$$"
add+="\paragraph{}\n"
add+="\paragraph{}\n"
add+="\paragraph{}\n"
add+="the obtained awser would be \n"
add+="\paragraph{}\n"
#input("contue")
con1=[0]*number_of_floors
con2=[0]*number_of_floors
for x in range(number_of_floors):
con1[x] = Symbol('c'+str(2*x+1)+"")
con2[x] = Symbol('c'+str(2*x+2)+"")
f_1_1mat=sol_f_1_l_F(number_of_floors,egonval)
f_1_1mat2=sol_f_1rows_l_F(number_of_floors,egonval)
add+="\paragraph{}\n"
add+="$$fl_{1}=\sum_{1}^{"+str(number_of_floors)+"}fl_{1,n}$$"
add+="\paragraph{}\n"
for x in range(number_of_floors):
add+="$$"+"\\vec{fl_{1,"+str(x+1)+"}}"+" = "+latex(f_1_1mat2[x][1])+"*"+latex(f_1_1mat2[x][0])+"$$\n"
if input("print f_1_1 y or n").lower()=="y":
for x in range(len(f_1_1mat)):
#print("f_1_1",str(x+1),"=")
#print(f_1_1mat[x])
pass
invA=get_invA_F(evl_matrix)
egonval=get_egonvalA_F(evl_matrix)
add+="\paragraph{}\n"
add+="\paragraph{}\n"
add+="\paragraph{}\n"
add+="this is where i would put the particular power series and how how to solve with it and explain how there used to solve\n"
add+="\paragraph{}\n"
powerseries=get_powerseries_F(number_of_floors,powervec)
solve=get_powerseries_F(number_of_floors,powervec)
powerF_2_1mat=[""]*len(solve)
mult=len(solve)
for x in range(len(solve)):
powerF_2_1mat[mult-x-1]=np.dot(solve[mult-x-1],invA)
if (mult-x-3)>=0:
solve[mult-x-3]=solve[mult-x-1]+powerF_2_1mat[mult-x-1]*((mult-x-2)*(mult-x-1))
add+="the soltion of the power seres is found with the recusive eqation"
add+="$$A^{-1}*(\\vec{f_{n}}+(n(n+1))*\\vec{fl_{n+2}})=fl_{n}$$\n"
add+="\paragraph{}\n"
add+="this is 3rd order vecor of the power sires"
f_2_l_taylor=powerfunc_F(powerF_2_1mat)
f_2_l_taylor2=Matrix(powerfunc_F(powerF_2_1mat))
f_2_l_taylor3=Matrix(powerfunc_withmax_F(powerF_2_1mat,3))
#pprint(f_1_1mat[x])
#pprint(latex(f_2_l_taylor2))
#print()
add+="\paragraph{}\n"
add+="$$"+"\\vec{fl_{2}}"+" = "+latex(f_2_l_taylor3)+"$$\n"
F_t_=[0]*len(f_2_l_taylor)
for x in range(len(f_2_l_taylor)):
F_t_[x]=f_2_l_taylor[x]+f_1_1mat[x]
#print solotions
fldp=[""]*len(F_t_)
for x in range(len(F_t_)):
this=diff(F_t_[x], time)
fldp[x]=diff(this, time)
add+="\paragraph{}\n"
add+="\paragraph{}\n"
add+="\paragraph{}\n"
add+="the sum of the $\\vec{fl_{1}}$ and $\\vec{fl_{2}}$ yilds the soltion vector\n"
add+="$$"+"\\vec{fl}"+" = "+"\\vec{fl_{1}}+\\vec{fl_{2}}"+"$$\n"
add+="\paragraph{}\n"
add+="its gigantic so i wont wright it\n"
# but you could with F_t_
#
fl=Matrix(F_t_)
cheacker=eval_A_mat.dot(fl)
#pprint(eval_A_mat)
#print(fl[0])
# this is a way to cheack the solotion
#print(print(""))
#print(cheacker[0])
#print()
#print(fldp[0])
#print()
#print(F_t_[0])
#print()
#print(fl[1])
#print()
#print(fl[2])
#print(egonval[0][0])
#print(egonval[1][0])
#pprint(evl_matrix)
#pprint(get_egonvalA_F(evl_matrix))
add+="\paragraph{}\n"
v0=vel_0_F(number_of_floors,powerseries,powerF_2_1mat)
p0=pos_0_F(number_of_floors,powerseries,powerF_2_1mat)
print(p0)
print(v0)
add+="$$"+"\\vec{fl(0)}"+" = "+latex(Matrix(v0))+"$$\n"
add+="$$"+"\\vec{fl'(0)}"+" = "+latex(Matrix(p0))+"$$\n"
v0=v0-sub_1_vec_F(number_of_floors)
p0=p0-sub_0_vec_F(number_of_floors)
## finding the constnets
def makeivmat_P(egonval,number_of_floors):
mat=np.zeros((number_of_floors,number_of_floors))
print(mat)
for x in range(number_of_floors):
mat[x]=egonval[1][x]*1
return get_invA_F(mat)
makeivmat_P(egonval,number_of_floors)
c01=np.dot(makeivmat_P(egonval,number_of_floors),v0)
print("here")
makeivmat_P(egonval,number_of_floors)
print(c01)
c02=np.dot(makeivmat_P(egonval,number_of_floors),p0)
convec=[0]*(2*number_of_floors)
for x in range(len(c01)):
convec[x*2+0]+=c01[x]
convec[x*2+1]+=-c02[x]
## finding the constnets
add+="$$"+"\\vec{c}"+" = "+latex(Matrix(convec))+"$$\n"
add+="\end{document}"
file = open("testfile.tex","w")
file.write(add)
file.close()
print()
#print(F_t_[0])
pos = symbols('pos')
def make_eqation_F(number_of_floors,egonval,convec,y):
row=0
for x in range(number_of_floors):
if egonval[0][x]>=0:
add=convec[2*x+0]*sinh(math.sqrt(abs(egonval[0][x]))*(time))+convec[0][2*x+0]*cosh(math.sqrt(abs(egonval[0][x]))*(time))
else:
#print(convec[0])
add=convec[2*x+0]*sin(math.sqrt(abs(egonval[0][x]))*time)+convec[2*x+1]*cos(math.sqrt(abs(egonval[0][x]))*(time))
row=row+add*egonval[1][y][x]
row+=f_2_l_taylor[y]
print(row)
print(row.subs(time,0))
here=latex(plot(row, (time, 0, 50)))
return here
for x in range(number_of_floors):
print("this is funtion",x)
this=make_eqation_F(number_of_floors,egonval,convec,x)
print()
print()
print(this)
add+="\end{document}"
file = open("testfile.tex","w")
file.write(add)