forked from reichlab/reichlab.github.io
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresearch.html
executable file
·260 lines (233 loc) · 11.8 KB
/
research.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="description" content="">
<meta name="author" content="">
<title>Reich Lab: Biostatistics and Infectious Disease Epidemiology</title>
<!-- Bootstrap Core CSS -->
<link href="css/bootstrap.min.css" rel="stylesheet">
<!-- Custom CSS -->
<link href="css/modern-business.css" rel="stylesheet">
<!-- Custom Fonts -->
<link href="font-awesome/css/font-awesome.min.css" rel="stylesheet" type="text/css">
<!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
<!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<!-- Navigation -->
<nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">
<div class="container">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">Reich Lab @ UMassAmherst</a>
<!--<img class="img-responsive" src="images/UMass-Wordmark-Horizontal-1500pxwide-72dpi.png" alt="" height="4px"> -->
</div>
<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav navbar-right">
<li>
<a href="people.html">People</a>
</li>
<li>
<a href="research.html">Research</a>
</li>
<li>
<a href="publications.html">Publications</a>
</li>
<li>
<a href="teaching.html">Teaching</a>
</li>
<!--
<li>
<a href="services.html">Research</a>
</li>
<li>
<a href="contact.html">Contact</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Research <b class="caret"></b></a>
<ul class="dropdown-menu">
<li>
<a href="portfolio-1-col.html">1 Column Portfolio</a>
</li>
<li>
<a href="portfolio-2-col.html">2 Column Portfolio</a>
</li>
<li>
<a href="portfolio-3-col.html">3 Column Portfolio</a>
</li>
<li>
<a href="portfolio-4-col.html">4 Column Portfolio</a>
</li>
<li>
<a href="portfolio-item.html">Single Portfolio Item</a>
</li>
</ul>
</li>
-->
<!--
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Blog <b class="caret"></b></a>
<ul class="dropdown-menu">
<li>
<a href="blog-home-1.html">Blog Home 1</a>
</li>
<li>
<a href="blog-home-2.html">Blog Home 2</a>
</li>
<li>
<a href="blog-post.html">Blog Post</a>
</li>
</ul>
</li>
-->
<!--
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown">Other Pages <b class="caret"></b></a>
<ul class="dropdown-menu">
<li>
<a href="full-width.html">Full Width Page</a>
</li>
<li>
<a href="sidebar.html">Sidebar Page</a>
</li>
<li>
<a href="faq.html">FAQ</a>
</li>
<li>
<a href="404.html">404</a>
</li>
<li>
<a href="pricing.html">Pricing Table</a>
</li>
-->
</ul>
</li>
</ul>
</div>
<!-- /.navbar-collapse -->
</div>
<!-- /.container -->
</nav>
<!-- Page Content -->
<div class="container">
<!-- Page Heading/Breadcrumbs -->
<div class="row">
<div class="col-lg-12">
<h1 class="page-header">Research
<!-- <small>Reich Lab</small> -->
</h1>
<!--
<ol class="breadcrumb">
<li><a href="index.html">Home</a>
</li>
<li class="active">Research</li>
</ol>
-->
</div>
</div>
<!-- /.row -->
<!-- Projects Row -->
<div class="row">
<div class="col-md-6 img-portfolio">
<img class="img-responsive" src="images/forecast-map-all-narrow.jpg" alt="">
<h3>
Disease forecasting
</h3>
<p>Our team is working to develop statistical methods and tools that can improve real-time infectious disease forecasting efforts for a variety of diseases, including dengue fever and influenza. For example, in a collaboration with the Ministry of Public Health in Thailand, our team has built statistical forecast models to predict outbreaks of dengue fever in real-time since early 2014 for each of the 77 provinces in Thailand. These forecasts are based on over 2 million unique reported case records of dengue fever in Thailand since 1968. <!-- Since case reports accumulate over time, we have built a statistical framework that first adjusts for reporting delays and then uses a model of population-level disease dynamics to forecast cases and outbreak levels in the near future. --></p>
<a class="btn btn-primary" href="publications.html">View Publications</i></a>
</div>
<div class="col-md-6 img-portfolio">
<img class="img-responsive " src="images/simulatedSpectra3.png" alt="">
<h3>
Statistical Methods for Pathogen Interactions
</h3>
<p>
In multi-pathogen infectious disease systems, complex immunological interactions between multiple strains of disease govern the evolutionary and epidemiological dynamics of disease. Understanding these interactions plays a vital role in clinical and public health decision-making.
Our work combines multiple data streams from complex disease systems with modern statistical and computational methodologies to find evidence of complex interactions within the system.
For example, our research was the first to use population-level data to explicitly estimate the duration of temporary immunity experienced by individuals after an infection with one of the four serotypes of dengue fever.
</p>
<a class="btn btn-primary" href="publications.html">View Publications</i></a>
</div>
</div>
<!-- /.row -->
<!-- Projects Row -->
<div class="row">
<div class="col-md-6 img-portfolio">
<img class="img-responsive " src="images/crxo-power.jpg" alt="">
<h3>
Cluster-randomized Trial Design
</h3>
<p>Cluster-randomized trials are a type of clinical trial where clusters of individuals are randomized instead of individuals. In our work on several high-profile cluster-randomized clinical trials -- including the ResPECT Study (funded by CDC and VA), the SCRUB Trial, and a telehealth collaborative care trial for HIV patients (funded by VA) -- we have developed simulation methods for calculating power for cluster-randomized and cluster-randomized crossover trials. These methods are available as an R software package, <a href="http://cran.r-project.org/web/packages/clusterPower/index.html">clusterPower. </p>
<a class="btn btn-primary" href="publications.html">View Publications</i></a>
</div>
<div class="col-md-6 img-portfolio">
<img class="img-responsive" src="images/gamma-posterior.png" alt="">
<h3>
Estimating Incubation Period Distributions
</h3>
<p> The incubation period -- the length of time between infection with a pathogen and the onset of symptoms -- plays a vital role in the prevention and control of infectious disease. Estimating the incubation period can be challenging because often both the time of infection and the time of onset are not observed exactly. Our work has developed robust statistical methods to estimate the full duration of the incubation period. Recent work focuses on characterizing the uncertainty in incubation period estimates in ways that could assist in creating evidence-based quarantine policies for infectious diseases, such as Ebola or influenza. </p>
<a class="btn btn-primary" href="publications.html">View Publications</i></a>
</div>
</div>
<!-- /.row -->
<hr>
<!-- Pagination -->
<!-- <div class="row text-center">
<div class="col-lg-12">
<ul class="pagination">
<li>
<a href="#">«</a>
</li>
<li class="active">
<a href="#">1</a>
</li>
<li>
<a href="#">2</a>
</li>
<li>
<a href="#">3</a>
</li>
<li>
<a href="#">4</a>
</li>
<li>
<a href="#">5</a>
</li>
<li>
<a href="#">»</a>
</li>
</ul>
</div>
</div>
-->
<!-- /.row -->
<!-- Footer -->
<footer>
<div class="row">
<div class="col-lg-12">
<p>Copyright © Nicholas Reich 2015</p>
</div>
</div>
</footer>
</div>
<!-- /.container -->
<!-- jQuery -->
<script src="js/jquery.js"></script>
<!-- Bootstrap Core JavaScript -->
<script src="js/bootstrap.min.js"></script>
</body>
</html>