-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbiblio.bib
159 lines (140 loc) · 4.88 KB
/
biblio.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
@misc{nguyen,
title={SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient},
author={Lam M. Nguyen and Jie Liu and Katya Scheinberg and Martin Takáč},
year={2017},
eprint={1703.00102},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
@misc{kingma,
title={Adam: A Method for Stochastic Optimization},
author={Diederik P. Kingma and Jimmy Ba},
year={2017},
eprint={1412.6980},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{Beznosikov,
title={Random-reshuffled SARAH does not need full gradient computations},
volume={18},
ISSN={1862-4480},
url={http://dx.doi.org/10.1007/s11590-023-02081-x},
DOI={10.1007/s11590-023-02081-x},
number={3},
journal={Optimization Letters},
publisher={Springer Science and Business Media LLC},
author={Beznosikov, Aleksandr and Takáč, Martin},
year={2023},
month=dec, pages={727–749} }
@article{Chauhan,
title={SAAGs: Biased stochastic variance reduction methods for large-scale learning},
volume={49},
ISSN={1573-7497},
url={http://dx.doi.org/10.1007/s10489-019-01450-3},
DOI={10.1007/s10489-019-01450-3},
number={9},
journal={Applied Intelligence},
publisher={Springer Science and Business Media LLC},
author={Chauhan, Vinod Kumar and Sharma, Anuj and Dahiya, Kalpana},
year={2019},
month=apr, pages={3331–3361} }
@article{Grbzbalaban,
title={Why random reshuffling beats stochastic gradient descent},
volume={186},
ISSN={1436-4646},
url={http://dx.doi.org/10.1007/s10107-019-01440-w},
DOI={10.1007/s10107-019-01440-w},
number={1–2},
journal={Mathematical Programming},
publisher={Springer Science and Business Media LLC},
author={Gürbüzbalaban, M. and Ozdaglar, A. and Parrilo, P. A.},
year={2019},
month=oct, pages={49–84} }
@misc{chenadamenhanced,
title={An Adam-enhanced Particle Swarm Optimizer for Latent Factor Analysis},
author={Jia Chen and Renyu Zhang and Yuanyi Liu},
year={2023},
eprint={2302.11956},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{wangprovable,
title={Provable Adaptivity in Adam},
author={Bohan Wang and Yushun Zhang and Huishuai Zhang and Qi Meng and Zhi-Ming Ma and Tie-Yan Liu and Wei Chen},
year={2022},
eprint={2208.09900},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{defossezsimple,
title={A Simple Convergence Proof of Adam and Adagrad},
author={Alexandre Défossez and Léon Bottou and Francis Bach and Nicolas Usunier},
year={2022},
eprint={2003.02395},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
@inproceedings{inproceedings,
author = {Bock, Sebastian and Goppold, Josef and Weiß, Martin},
year = {2018},
month = {04},
pages = {},
title = {An improvement of the convergence proof of the ADAM-Optimizer}
}
@misc{heconvergence,
title={Convergence of Adam for Non-convex Objectives: Relaxed Hyperparameters and Non-ergodic Case},
author={Meixuan He and Yuqing Liang and Jinlan Liu and Dongpo Xu},
year={2023},
eprint={2307.11782},
archivePrefix={arXiv},
primaryClass={math.OC}
}
@article{adamrandomblock,
author = {Liu, Miaomiao and Yao, Dan and Liu, Zhigang and Guo, Jingfeng and Chen, Jing},
year = {2023},
month = {01},
pages = {1-14},
title = {An Improved Adam Optimization Algorithm Combining Adaptive Coefficients and Composite Gradients Based on Randomized Block Coordinate Descent},
volume = {2023},
journal = {Computational Intelligence and Neuroscience},
doi = {10.1155/2023/4765891}
}
@misc{ruderoverview,
title={An overview of gradient descent optimization algorithms},
author={Sebastian Ruder},
year={2017},
eprint={1609.04747},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{tensorflow,
title = {{TensorFlow Keras Optimizers Method} tf.keras.optimizers},
howpublished = {\url{https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam}},
note = {Accessed: 2024-04-20}
}
@article{sarahm,
title = {SARAH-M: A fast stochastic recursive gradient descent algorithm via momentum},
journal = {Expert Systems with Applications},
volume = {238},
pages = {122295},
year = {2024},
issn = {0957-4174},
doi = {https://doi.org/10.1016/j.eswa.2023.122295},
url = {https://www.sciencedirect.com/science/article/pii/S0957417423027975},
author = {Zhuang Yang},
}
@misc{reddidivergence,
title={On the Convergence of Adam and Beyond},
author={Sashank J. Reddi and Satyen Kale and Sanjiv Kumar},
year={2019},
eprint={1904.09237},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{winequality,
author = {Cortez,Paulo and Cerdeira,A. and Almeida,F. and Matos,T. and Reis,J.},
title = {{Wine Quality}},
year = {2009},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: https://doi.org/10.24432/C56S3T}
}