-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathsalsa20.c
199 lines (170 loc) · 5.58 KB
/
salsa20.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#include <stdint.h>
#include <stddef.h>
#include "salsa20.h"
// Implements DJB's definition of '<<<'
static uint32_t rotl(uint32_t value, int shift)
{
return (value << shift) | (value >> (32 - shift));
}
static void s20_quarterround(uint32_t *y0, uint32_t *y1, uint32_t *y2, uint32_t *y3)
{
*y1 = *y1 ^ rotl(*y0 + *y3, 7);
*y2 = *y2 ^ rotl(*y1 + *y0, 9);
*y3 = *y3 ^ rotl(*y2 + *y1, 13);
*y0 = *y0 ^ rotl(*y3 + *y2, 18);
}
static void s20_rowround(uint32_t y[static 16])
{
s20_quarterround(&y[0], &y[1], &y[2], &y[3]);
s20_quarterround(&y[5], &y[6], &y[7], &y[4]);
s20_quarterround(&y[10], &y[11], &y[8], &y[9]);
s20_quarterround(&y[15], &y[12], &y[13], &y[14]);
}
static void s20_columnround(uint32_t x[static 16])
{
s20_quarterround(&x[0], &x[4], &x[8], &x[12]);
s20_quarterround(&x[5], &x[9], &x[13], &x[1]);
s20_quarterround(&x[10], &x[14], &x[2], &x[6]);
s20_quarterround(&x[15], &x[3], &x[7], &x[11]);
}
static void s20_doubleround(uint32_t x[static 16])
{
s20_columnround(x);
s20_rowround(x);
}
// Creates a little-endian word from 4 bytes pointed to by b
static uint32_t s20_littleendian(uint8_t *b)
{
return b[0] +
((uint_fast16_t) b[1] << 8) +
((uint_fast32_t) b[2] << 16) +
((uint_fast32_t) b[3] << 24);
}
// Moves the little-endian word into the 4 bytes pointed to by b
static void s20_rev_littleendian(uint8_t *b, uint32_t w)
{
b[0] = w;
b[1] = w >> 8;
b[2] = w >> 16;
b[3] = w >> 24;
}
// The core function of Salsa20
static void s20_hash(uint8_t seq[static 64])
{
int i;
uint32_t x[16];
uint32_t z[16];
// Create two copies of the state in little-endian format
// First copy is hashed together
// Second copy is added to first, word-by-word
for (i = 0; i < 16; ++i)
x[i] = z[i] = s20_littleendian(seq + (4 * i));
for (i = 0; i < 10; ++i)
s20_doubleround(z);
for (i = 0; i < 16; ++i) {
z[i] += x[i];
s20_rev_littleendian(seq + (4 * i), z[i]);
}
}
// The 16-byte (128-bit) key expansion function
static void s20_expand16(uint8_t *k,
uint8_t n[static 16],
uint8_t keystream[static 64])
{
int i, j;
// The constants specified by the Salsa20 specification, 'tau'
// "expand 16-byte k"
uint8_t t[4][4] = {
{ 'e', 'x', 'p', 'a' },
{ 'n', 'd', ' ', '1' },
{ '6', '-', 'b', 'y' },
{ 't', 'e', ' ', 'k' }
};
// Copy all of 'tau' into the correct spots in our keystream block
for (i = 0; i < 64; i += 20)
for (j = 0; j < 4; ++j)
keystream[i + j] = t[i / 20][j];
// Copy the key and the nonce into the keystream block
for (i = 0; i < 16; ++i) {
keystream[4+i] = k[i];
keystream[44+i] = k[i];
keystream[24+i] = n[i];
}
s20_hash(keystream);
}
// The 32-byte (256-bit) key expansion function
static void s20_expand32(uint8_t *k,
uint8_t n[static 16],
uint8_t keystream[static 64])
{
int i, j;
// The constants specified by the Salsa20 specification, 'sigma'
// "expand 32-byte k"
uint8_t o[4][4] = {
{ 'e', 'x', 'p', 'a' },
{ 'n', 'd', ' ', '3' },
{ '2', '-', 'b', 'y' },
{ 't', 'e', ' ', 'k' }
};
// Copy all of 'sigma' into the correct spots in our keystream block
for (i = 0; i < 64; i += 20)
for (j = 0; j < 4; ++j)
keystream[i + j] = o[i / 20][j];
// Copy the key and the nonce into the keystream block
for (i = 0; i < 16; ++i) {
keystream[4+i] = k[i];
keystream[44+i] = k[i+16];
keystream[24+i] = n[i];
}
s20_hash(keystream);
}
// Performs up to 2^32-1 bytes of encryption or decryption under a
// 128- or 256-bit key and 64-byte nonce.
enum s20_status_t s20_crypt(uint8_t *key,
enum s20_keylen_t keylen,
uint8_t nonce[static 8],
uint32_t si,
uint8_t *buf,
uint32_t buflen)
{
uint8_t keystream[64];
// 'n' is the 8-byte nonce (unique message number) concatenated
// with the per-block 'counter' value (4 bytes in our case, 8 bytes
// in the standard). We leave the high 4 bytes set to zero because
// we permit only a 32-bit integer for stream index and length.
uint8_t n[16] = { 0 };
uint32_t i;
// Pick an expansion function based on key size
void (*expand)(uint8_t *, uint8_t *, uint8_t *) = NULL;
if (keylen == S20_KEYLEN_256)
expand = s20_expand32;
if (keylen == S20_KEYLEN_128)
expand = s20_expand16;
// If any of the parameters we received are invalid
if (expand == NULL || key == NULL || nonce == NULL || buf == NULL)
return S20_FAILURE;
// Set up the low 8 bytes of n with the unique message number
for (i = 0; i < 8; ++i)
n[i] = nonce[i];
// If we're not on a block boundary, compute the first keystream
// block. This will make the primary loop (below) cleaner
if (si % 64 != 0) {
// Set the second-to-highest 4 bytes of n to the block number
s20_rev_littleendian(n+8, si / 64);
// Expand the key with n and hash to produce a keystream block
(*expand)(key, n, keystream);
}
// Walk over the plaintext byte-by-byte, xoring the keystream with
// the plaintext and producing new keystream blocks as needed
for (i = 0; i < buflen; ++i) {
// If we've used up our entire keystream block (or have just begun
// and happen to be on a block boundary), produce keystream block
if ((si + i) % 64 == 0) {
s20_rev_littleendian(n+8, ((si + i) / 64));
(*expand)(key, n, keystream);
}
// xor one byte of plaintext with one byte of keystream
buf[i] ^= keystream[(si + i) % 64];
}
return S20_SUCCESS;
}