-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathprompt_generator.py
339 lines (296 loc) · 12 KB
/
prompt_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
from os import listdir
from os.path import join, isdir, exists
from torch import manual_seed
from torch.cuda import empty_cache
from gc import collect
from transformers import set_seed
from random import randint
from datetime import date
from generator.generate import GenerateArgs, Generator, get_generated_texts
from generator.utility import get_usable_quantize_sizes
from comfy.sd import CLIP
from folder_paths import models_dir, base_path
INT_MAX = 0xFFFFFFFFFFFFFFFF
FLOAT_MAX = 1_000_000.0
class PromptGenerator:
_index = 0 # index to use for the cached generations, range in [0, 4]
_generated_prompts = [] # last generated prompts
_tokenized_prompts = [] # tokenized prompts from the last generated prompts
_gen_settings = GenerateArgs # gen configurations from the last generation
@classmethod
def INPUT_TYPES(self):
quantize_sizes = get_usable_quantize_sizes()
model_names = [
file
for file in listdir(join(models_dir, "prompt_generators"))
if isdir(join(models_dir, "prompt_generators", file))
]
return {
"required": {
"clip": ("CLIP",),
"model_name": (model_names,),
"accelerate": (["enable", "disable"],),
"quantize": (quantize_sizes,),
"token_healing": (["disable", "enable"],),
"prompt": (
"STRING",
{
"multiline": True,
"default": "((masterpiece, best quality, ultra detailed)), illustration, digital art, 1girl, solo, ((stunningly beautiful)), ",
},
),
"seed": (
"INT",
{"default": 0, "min": 0, "max": 0xFFFFFFFFFFFFFFFF},
),
"lock": (["disable", "enable"],),
"random_index": (["enable", "disable"],),
"index": ("INT", {"default": 1, "min": 1, "max": 5}),
"cfg": (
"FLOAT",
{
"default": 1.0,
"min": 0.0,
"max": FLOAT_MAX,
"step": 0.1,
},
),
"min_new_tokens": (
"INT",
{"default": 20, "min": 0, "max": INT_MAX, "step": 1},
),
"max_new_tokens": (
"INT",
{"default": 50, "min": 35, "max": INT_MAX, "step": 1},
),
"do_sample": (["disable", "enable"],),
"early_stopping": (["enable", "disable"],),
"num_beams": (
"INT",
{"default": 5, "min": 1, "max": INT_MAX, "step": 1},
),
"num_beam_groups": (
"INT",
{"default": 1, "min": 0, "max": INT_MAX, "step": 1},
),
"diversity_penalty": (
"FLOAT",
{"default": 0.0, "min": 0.0, "max": FLOAT_MAX, "step": 0.1},
),
"temperature": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": FLOAT_MAX, "step": 0.1},
),
"top_k": ("INT", {"default": 50, "min": 0, "max": INT_MAX, "step": 1}),
"top_p": (
"FLOAT",
{"default": 1.0, "min": 0.0, "max": FLOAT_MAX, "step": 0.1},
),
"repetition_penalty": (
"FLOAT",
{"default": 1.0, "min": 1.0, "max": FLOAT_MAX, "step": 0.1},
),
"no_repeat_ngram_size": (
"INT",
{"default": 0, "min": 0, "max": INT_MAX, "step": 1},
),
"remove_invalid_values": (["disable", "enable"],),
"self_recursive": (["disable", "enable"],),
"recursive_level": (
"INT",
{"default": 0, "min": 0, "max": INT_MAX, "step": 1},
),
"preprocess_mode": (["exact_keyword", "exact_prompt", "none"],),
},
}
def __log_outputs(
self,
model_name: str,
prompt: str,
self_recursive: str,
recursive_level: int,
preprocess_mode: str,
log_filename: str,
) -> None:
print_string = f"{' PROMPT GENERATOR OUTPUT '.center(200, '#')}\n"
print_string += f"Selected Prompt Index : {self._index + 1}\n\n"
for i in range(len(self._generated_prompts)):
print_string += (
f"[{i + 1}. Prompt] {self._generated_prompts[i]}\n{'-'*200}\n"
)
print_string += f"{'#'*200}\n"
print(print_string)
from datetime import datetime
with open(log_filename, "a") as file:
file.write(f"{'#'*200}\n")
file.write(f"Date & Time : {datetime.now()}\n")
file.write(f"Model : {model_name}\n")
file.write(f"Prompt : {prompt}\n")
file.write("Generated Prompts :\n")
for i in range(len(self._generated_prompts)):
file.write(
f"[{i + 1}. Prompt] : {self._generated_prompts[i]}\n{'-'*200}\n"
)
file.write(f"Selected Prompt Index : {self._index + 1}\n")
file.write(f"cfg : {self._gen_settings.guidance_scale}\n")
file.write(f"min_new_tokens : {self._gen_settings.min_new_tokens}\n")
file.write(f"max_new_tokens : {self._gen_settings.max_new_tokens}\n")
file.write(f"do_sample : {self._gen_settings.do_sample}\n")
file.write(f"early_stopping : {self._gen_settings.early_stopping}\n")
file.write(f"num_beams : {self._gen_settings.num_beams}\n")
file.write(
f"num_beam_groups : {self._gen_settings.num_beam_groups}\n"
)
file.write(f"temperature : {self._gen_settings.temperature}\n")
file.write(f"top_k : {self._gen_settings.top_k}\n")
file.write(f"top_p : {self._gen_settings.top_p}\n")
file.write(
f"repetition_penalty : {self._gen_settings.repetition_penalty}\n"
)
file.write(
f"no_repeat_ngram_size : {self._gen_settings.no_repeat_ngram_size}\n"
)
file.write(
f"remove_invalid_values : {self._gen_settings.remove_invalid_values}\n"
)
file.write(f"self_recursive : {self_recursive}\n")
file.write(f"recursive_level : {recursive_level}\n")
file.write(f"preprocess_mode : {preprocess_mode}\n")
def __tokenize_texts(self, clip: CLIP) -> list:
processed = []
# from nodes.py -> CLIPTextEncode -> encode
for text in self._generated_prompts:
tokens = clip.tokenize(text)
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
processed.append([[cond, {"pooled_output": pooled}]])
return processed
RETURN_TYPES = (
"CONDITIONING",
"STRING",
)
RETURN_NAMES = ("gen_prompt", "gen_prompt_str")
FUNCTION = "generate"
CATEGORY = "Prompt Generator"
def generate(
self,
clip: CLIP,
model_name: str,
accelerate: str,
quantize: str,
token_healing: str,
prompt: str,
seed: int,
lock: str,
random_index: str,
index: int,
cfg: float,
min_new_tokens: int,
max_new_tokens: int,
do_sample: str,
early_stopping: str,
num_beams: int,
num_beam_groups: int,
diversity_penalty: float,
temperature: float,
top_k: float,
top_p: float,
repetition_penalty: float,
no_repeat_ngram_size: int,
remove_invalid_values: str,
self_recursive: str,
recursive_level: int,
preprocess_mode: str,
):
# deal with encodings
prompt = prompt.encode("ascii", "xmlcharrefreplace").decode()
prompt = prompt.encode(errors="xmlcharrefreplace").decode()
# create the prompt log file for current day
prompt_log_filename = (
join(base_path, "generated_prompts", str(date.today())) + ".txt"
)
is_do_sample = True if do_sample == "enable" else False
# randint(min, max) -> [min, max]
# index -> [1, 5]
self._index = randint(0, 4) if random_index == "enable" else index - 1
is_lock_generation = True if lock == "enable" else False
"""
check if it is the first generation with taking length of tokenized prompts
and the boolean with is lock enabled
if it is true just return from the lists with assigned new index (declaration is above)
log the outputs for the clearity
"""
if is_lock_generation is True and len(self._tokenized_prompts) > 0:
self.__log_outputs(
model_name,
prompt,
self_recursive,
recursive_level,
preprocess_mode,
prompt_log_filename,
)
return (
self._tokenized_prompts[self._index],
self._generated_prompts[self._index],
)
# create relative path for the model
model_path = join(models_dir, "prompt_generators", model_name)
is_self_recursive = True if self_recursive == "enable" else False
is_accelerate = True if accelerate == "enable" else False
is_token_healing = True if token_healing == "enable" else False
is_early_stopping = True if early_stopping == "enable" else False
is_remove_invalid_values = True if remove_invalid_values == "enable" else False
if is_do_sample:
# huggingface supports [0, 2 ** 32 - 1] as seed
set_seed(randint(0, 4294967294))
manual_seed(seed)
if exists(prompt_log_filename) is False:
file = open(prompt_log_filename, "w")
file.close()
generator = Generator(model_path, is_accelerate, is_token_healing, quantize)
self._gen_settings = GenerateArgs(
guidance_scale=cfg,
min_new_tokens=min_new_tokens,
max_new_tokens=max_new_tokens,
do_sample=is_do_sample,
early_stopping=is_early_stopping,
num_beams=num_beams,
num_beam_groups=num_beam_groups,
diversity_penalty=diversity_penalty,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
remove_invalid_values=is_remove_invalid_values,
)
self._generated_prompts = get_generated_texts(
generator,
self._gen_settings,
prompt,
is_self_recursive,
recursive_level,
preprocess_mode,
)
self._tokenized_prompts = self.__tokenize_texts(clip)
del generator
empty_cache()
collect()
self.__log_outputs(
model_name,
prompt,
self_recursive,
recursive_level,
preprocess_mode,
prompt_log_filename,
)
return (
self._tokenized_prompts[self._index],
self._generated_prompts[self._index],
)
@classmethod
def VALIDATE_INPUTS(self, **kwargs):
model_name = kwargs["model_name"]
model_path = join(models_dir, "prompt_generators", model_name)
if not exists(model_path):
return f"{model_path} is not exists"
return True