forked from TDAmeritrade/stumpy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmin.py
executable file
·162 lines (147 loc) · 5.13 KB
/
min.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python
import argparse
import pandas as pd
from packaging.specifiers import SpecifierSet
from packaging.version import Version
def get_min_python_version():
"""
Find the minimum version of Python supported (i.e., not end-of-life)
"""
min_python = (
pd.read_html("https://devguide.python.org/versions/")[0].iloc[-1].Branch
)
return min_python
def get_min_numba_numpy_version(min_python):
"""
Find the minimum versions of Numba and NumPy that supports the specified
`min_python` version
"""
df = (
pd.read_html(
"https://numba.readthedocs.io/en/stable/user/installing.html#version-support-information" # noqa
)[0]
.dropna()
.drop(columns=["Numba.1", "llvmlite", "LLVM", "TBB"])
.query('`Python`.str.contains("2.7") == False')
.query('`Numba`.str.contains(".x") == False')
.query('`Numba`.str.contains("{") == False')
.pipe(
lambda df: df.assign(
MIN_PYTHON_SPEC=(
df.Python.str.split().str[1].replace({"<": ">"}, regex=True)
+ df.Python.str.split().str[0].replace({".x": ""}, regex=True)
).apply(SpecifierSet)
)
)
.pipe(
lambda df: df.assign(
MAX_PYTHON_SPEC=(
df.Python.str.split().str[3].replace({">": "<"}, regex=True)
+ df.Python.str.split().str[4].replace({".x": ""}, regex=True)
).apply(SpecifierSet)
)
)
.pipe(
lambda df: df.assign(
MIN_NUMPY=(df.NumPy.str.split().str[0].replace({".x": ""}, regex=True))
)
)
.assign(
COMPATIBLE=lambda row: row.apply(
check_python_compatibility, axis=1, args=(Version(min_python),)
)
)
.query("COMPATIBLE == True")
.pipe(lambda df: df.assign(MINOR=df.Numba.str.split(".").str[1]))
.pipe(lambda df: df.assign(PATCH=df.Numba.str.split(".").str[2]))
.sort_values(["MINOR", "PATCH"], ascending=[False, True])
.iloc[-1]
)
return df.Numba, df.MIN_NUMPY
def check_python_compatibility(row, min_python):
"""
Determine the Python version compatibility
"""
python_compatible = min_python in (row.MIN_PYTHON_SPEC & row.MAX_PYTHON_SPEC)
return python_compatible
def check_scipy_compatibility(row, min_python, min_numpy):
"""
Determine the Python and NumPy version compatibility
"""
python_compatible = min_python in (row.MIN_PYTHON_SPEC & row.MAX_PYTHON_SPEC)
numpy_compatible = min_numpy in (row.MIN_NUMPY_SPEC & row.MAX_NUMPY_SPEC)
return python_compatible & numpy_compatible
def get_min_scipy_version(min_python, min_numpy):
"""
Determine the SciPy version compatibility
"""
df = (
pd.read_html("https://docs.scipy.org/doc/scipy/dev/toolchain.html#numpy")[1]
.rename(columns=lambda x: x.replace(" ", "_"))
.replace({".x": ""}, regex=True)
.pipe(
lambda df: df.assign(
SciPy_version=df.SciPy_version.str.replace(
"\d\/", "", regex=True # noqa
)
)
)
.query('`Python_versions`.str.contains("2.7") == False')
.pipe(
lambda df: df.assign(
MIN_PYTHON_SPEC=df.Python_versions.str.split(",")
.str[0]
.apply(SpecifierSet)
)
)
.pipe(
lambda df: df.assign(
MAX_PYTHON_SPEC=df.Python_versions.str.split(",")
.str[1]
.apply(SpecifierSet)
)
)
.pipe(
lambda df: df.assign(
MIN_NUMPY_SPEC=df.NumPy_versions.str.split(",")
.str[0]
.apply(SpecifierSet)
)
)
.pipe(
lambda df: df.assign(
MAX_NUMPY_SPEC=df.NumPy_versions.str.split(",")
.str[1]
.apply(SpecifierSet)
)
)
.assign(
COMPATIBLE=lambda row: row.apply(
check_scipy_compatibility,
axis=1,
args=(Version(min_python), Version(min_numpy)),
)
)
.query("COMPATIBLE == True")
.pipe(lambda df: df.assign(MINOR=df.SciPy_version.str.split(".").str[1]))
.pipe(lambda df: df.assign(PATCH=df.SciPy_version.str.split(".").str[2]))
.sort_values(["MINOR", "PATCH"], ascending=[False, True])
.iloc[-1]
)
return df.SciPy_version
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("min_python", nargs="?", default=None)
args = parser.parse_args()
if args.min_python is not None:
MIN_PYTHON = str(args.min_python)
else:
MIN_PYTHON = get_min_python_version()
MIN_NUMBA, MIN_NUMPY = get_min_numba_numpy_version(MIN_PYTHON)
MIN_SCIPY = get_min_scipy_version(MIN_PYTHON, MIN_NUMPY)
print(
f"python: {MIN_PYTHON}\n"
f"numba: {MIN_NUMBA}\n"
f"numpy: {MIN_NUMPY}\n"
f"scipy: {MIN_SCIPY}"
)