forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsdpa_free_format.h
512 lines (461 loc) · 19.5 KB
/
sdpa_free_format.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
#pragma once
#include <string>
#include <unordered_map>
#include <variant>
#include <vector>
#include <Eigen/Core>
#include <Eigen/Sparse>
#include "drake/common/drake_copyable.h"
#include "drake/common/type_safe_index.h"
#include "drake/solvers/mathematical_program.h"
namespace drake {
namespace solvers {
namespace internal {
/**
* X is a block diagonal matrix in SDPA format. EntryInX stores the information
* of one entry in this block-diagonal matrix X.
*/
struct EntryInX {
EntryInX(int block_index_in, int row_index_in_block_in,
int column_index_in_block_in, int X_start_row_in)
: block_index{block_index_in},
row_index_in_block(row_index_in_block_in),
column_index_in_block(column_index_in_block_in),
X_start_row(X_start_row_in) {}
// block_index is 0-indexed.
int block_index;
// The row and column indices of the entry in this block. Both row/column
// indices are 0-indexed.
int row_index_in_block;
int column_index_in_block;
// The starting row index of this block in X. This is 0-indexed.
int X_start_row;
};
enum class BlockType {
kMatrix,
kDiagonal,
};
struct BlockInX {
BlockInX(BlockType block_type_in, int num_rows_in)
: block_type{block_type_in}, num_rows{num_rows_in} {}
BlockType block_type;
int num_rows;
};
/**
* Refer to @ref map_decision_variable_to_sdpa
* When the decision variable either (or both) finite lower or upper bound (with
* the two bounds not equal), we need to record the sign of the coefficient
* before y.
*/
enum class Sign {
kPositive,
kNegative,
};
/**
* @anchor map_decision_variable_to_sdpa Map decision variable to SDPA
* When MathematicalProgram formulates a semidefinite program (SDP), we can
* convert MathematicalProgram to a standard format for SDP, namely the SDPA
* format. Each of the variable x in MathematicalProgram might be mapped to a
* variable in the SDPA free format, depending on the following conditions.
* 1. If the variable x has no lower nor upper bound, it is mapped to a free
* variable in SDPA free format.
* 2. If the variable x only has a finite lower bound, and an infinite upper
* bound, then we will replace x by lower + y, where y is a diagonal entry
* in X in SDPA free format.
* 3. If the variable x only has a finite upper bound, and an infinite lower
* bound, then we will replace x by upper - y, where y is a diagonal entry
* in X in SDPA free format.
* 4. If the variable x has both finite upper and lower bounds, and these bounds
* are not equal, then we replace x by lower + y1, and introduce another
* constraint y1 + y2 = upper - lower, where both y1 and y2 are diagonal
* entries in X in SDPA free format.
* 5. If the variable x has equal lower and upper bound, then we replace x with
* the double value of lower bound.
* A MathematicalProgram decision variable can be replaced by coeff_sign * y +
* offset, where y is a diagonal entry in SDPA X matrix.
*/
struct DecisionVariableInSdpaX {
DecisionVariableInSdpaX(Sign coeff_sign_m, double offset_m,
EntryInX entry_in_X_m)
: coeff_sign{coeff_sign_m}, offset{offset_m}, entry_in_X{entry_in_X_m} {}
DecisionVariableInSdpaX(Sign coeff_sign_m, double offset_m, int block_index,
int row_index_in_block, int col_index_in_block,
int block_start_row)
: coeff_sign(coeff_sign_m),
offset(offset_m),
entry_in_X(block_index, row_index_in_block, col_index_in_block,
block_start_row) {}
Sign coeff_sign;
double offset;
EntryInX entry_in_X;
};
/**
* SDPA format with free variables.
*
* max tr(C * X) + dᵀs
* s.t tr(Aᵢ*X) + bᵢᵀs = gᵢ
* X ≽ 0
* s is free.
*/
class SdpaFreeFormat {
public:
DRAKE_NO_COPY_NO_MOVE_NO_ASSIGN(SdpaFreeFormat)
explicit SdpaFreeFormat(const MathematicalProgram& prog);
~SdpaFreeFormat();
[[nodiscard]] const std::vector<BlockInX>& X_blocks() const {
return X_blocks_;
}
using FreeVariableIndex = TypeSafeIndex<class FreeVariableTag>;
[[nodiscard]] const std::vector<std::variant<
DecisionVariableInSdpaX, FreeVariableIndex, double, std::nullptr_t>>&
prog_var_in_sdpa() const {
return prog_var_in_sdpa_;
}
[[nodiscard]] const std::vector<std::vector<Eigen::Triplet<double>>>&
A_triplets() const {
return A_triplets_;
}
[[nodiscard]] const std::vector<Eigen::Triplet<double>>& B_triplets() const {
return B_triplets_;
}
/** The right-hand side of the linear equality constraints. */
[[nodiscard]] const Eigen::VectorXd& g() const { return g_; }
int num_X_rows() const { return num_X_rows_; }
[[nodiscard]] int num_free_variables() const { return num_free_variables_; }
[[nodiscard]] const std::vector<Eigen::Triplet<double>>& C_triplets() const {
return C_triplets_;
}
[[nodiscard]] const std::vector<Eigen::Triplet<double>>& d_triplets() const {
return d_triplets_;
}
[[nodiscard]] const std::vector<Eigen::SparseMatrix<double>>& A() const {
return A_;
}
[[nodiscard]] const Eigen::SparseMatrix<double>& B() const { return B_; }
[[nodiscard]] const Eigen::SparseMatrix<double>& C() const { return C_; }
[[nodiscard]] const Eigen::SparseMatrix<double>& d() const { return d_; }
/** The SDPA format doesn't include the constant term in the cost, but
* MathematicalProgram does. We store the constant cost term here.
*/
[[nodiscard]] double constant_min_cost_term() const {
return constant_min_cost_term_;
}
/**
* For the following problem
*
* max tr(C * X) + dᵀs
* s.t tr(Aᵢ*X) + bᵢᵀs = aᵢ
* X ≽ 0
* s is free,
*
* remove the free variable s by considering the nullspace of Bᵀ, where bᵢᵀ
* is the i'th row of B.
*
* max tr((C-∑ᵢ ŷᵢAᵢ)*X̂) + aᵀŷ
* s.t tr(FᵢX̂) = (Nᵀa)(i)
* X̂ ≽ 0,
*
* where Fᵢ = ∑ⱼ NⱼᵢAⱼ, N is the null space of Bᵀ. Bᵀ * ŷ = d.
* For more information, refer to RemoveFreeVariableMethod for the
* derivation.
* @param C_hat[out] C_hat is (C-∑ᵢ ŷᵢAᵢ) in the documentation.
* @param A_hat[out] A_hat[i] is Fᵢ in the documentation.
* @param rhs_hat[out] rhs_hat is (Nᵀa)
* @param y_hat[out] ŷ in the documentation.
* @param QR_B[out] The QR decomposition of B.
*/
void RemoveFreeVariableByNullspaceApproach(
Eigen::SparseMatrix<double>* C_hat,
std::vector<Eigen::SparseMatrix<double>>* A_hat, Eigen::VectorXd* rhs_hat,
Eigen::VectorXd* y_hat,
Eigen::SparseQR<Eigen::SparseMatrix<double>, Eigen::COLAMDOrdering<int>>*
QR_B) const;
/**
* For the problem
*
* max tr(C * X) + dᵀs
* s.t tr(Aᵢ*X) + bᵢᵀs = aᵢ
* X ≽ 0
* s is free.
*
* Remove the free variable s by introducing two slack variables y⁺ ≥ 0 and y⁻
* ≥ 0, and the constraint y⁺ - y⁻ = s. We get a new program without free
* variables.
*
* max tr(Ĉ * X̂)
* s.t tr(Âᵢ*X̂) = aᵢ
* X̂ ≽ 0
* where Ĉ = diag(C, diag(d), -diag(d))
* X̂ = diag(X, diag(y⁺), diag(y⁻))
* Âᵢ = diag(Aᵢ, diag(bᵢ), -diag(bᵢ))
*
* @param[out] X_hat_blocks The block matrix recording X̂.
* @param[out] A_hat A_hat[i] is Âᵢ in the documentation.
* @param[out] C_hat Ĉ in the documentation.
*/
void RemoveFreeVariableByTwoSlackVariablesApproach(
std::vector<internal::BlockInX>* X_hat_blocks,
std::vector<Eigen::SparseMatrix<double>>* A_hat,
Eigen::SparseMatrix<double>* C_hat) const;
/**
* For the problem
*
* max tr(C * X) + dᵀs
* s.t tr(Aᵢ*X) + bᵢᵀs = aᵢ
* X ≽ 0
* s is free.
*
* Remove the free variable s by introducing a slack variable t with the
* Lorentz cone constraint t ≥ sqrt(sᵀs). We get a new program without free
* variables.
* The Lorentz cone constraint t ≥ sqrt(sᵀs) is equivalent to the following
* matrix being positive semidefinite (LMI constraint on t and s).
*
* ⎡ t s(1) s(2) ... s(n)⎤
* ⎢s(1) t 0 ... 0⎥
* ⎢ ... ⎥
* ⎣s(n) 0 0 t⎦
*
* To write this LMI in SDPA format, we can introduce a new matrix variable Y
* with the constraint Y ≽ 0
* Y(1, 1) is set to t, Y(1, i+1) is set to s(i)
* We also introduce the linear equality constraints
* Y(i, i) = Y(1, 1) if i >= 1
* Y(i, j) = 0 if i > j >=1
*
* After removing the free variables with Y, the SDP problem can be formulated
* as below:
*
* max tr(Ĉ * X̂)
* s.t tr(Âᵢ*X̂) = âᵢ
* X̂ ≽ 0
* where Ĉ = diag(C, D)
* X̂ = diag(X, Y)
* Âᵢ = diag(Aᵢ, B̂ᵢ)
* and the extra linear equality constraint
* Y(i, i) = Y(1, 1) if i >= 1
* Y(i, j) = 0 if i > j >= 1
* where D = ⎡0 dᵀ/2⎤
* ⎣d/2 0⎦
* B̂ᵢ = ⎡0 bᵢᵀ/2⎤
* ⎣bᵢ/2 0⎦
* in both D and B̂ᵢ, the top left 0 is a scalar, while the bottom right 0 is
* a matrix of size s.rows() x s.rows()
*
* @param[out] X_hat_blocks The block matrix recording X̂.
* @param[out] A_hat A_hat[i] is Âᵢ in the documentation.
* @param[out] rhs_hat rhs_hat[i] is âᵢ in the documentation.
* @param[out] C_hat Ĉ in the documentation.
*/
void RemoveFreeVariableByLorentzConeSlackApproach(
std::vector<internal::BlockInX>* X_hat_blocks,
std::vector<Eigen::SparseMatrix<double>>* A_hat, Eigen::VectorXd* rhs_hat,
Eigen::SparseMatrix<double>* C_hat) const;
private:
// Go through all the positive semidefinite constraint in @p prog, and
// register the corresponding blocks in matrix X for the bound variables of
// each PositiveSemidefiniteConstraint. It is possible for two
// PositiveSemidefiniteConstraint bindings to have overlapping decision
// variables, or for a single PositiveSemidefiniteConstraint to have duplicate
// decision variables. We need to impose equality constraints on these entries
// in X. We use entries_in_X_for_same_decision_variable to record these
// entries in X, so that we can impose the equality constraints later.
void DeclareXforPositiveSemidefiniteConstraints(
const MathematicalProgram& prog,
std::unordered_map<symbolic::Variable::Id, std::vector<EntryInX>>*
entries_in_X_for_same_decision_variable);
// Some entries in X correspond to the same decision variables. We need to add
// the equality constraint on these entries.
void AddEqualityConstraintOnXEntriesForSameDecisionVariable(
const std::unordered_map<symbolic::Variable::Id, std::vector<EntryInX>>&
entries_in_X_for_same_decision_variable);
// Adds a linear equality constraint
// coeff_prog_vars' * prog_vars + coeff_X_entries' * X_entries +
// coeff_free_vars' * free_vars = rhs.
// @param coeff_prog_vars The coefficients for program decision variables that
// appear in X.
// @param prog_vars_indices The indices of the MathematicalProgram decision
// variables in X that appear in this constraint.
// @param coeff_X_entries The coefficients for @p X_entries.
// @param X_entries The entries in X that show up in the linear equality
// constraint, X_entries and prog_vars_indices should not overlap.
// @param coeff_free_vars The coefficients of free variables.
// @param free_vars_indices The indices of the free variables show up in this
// constraint, these free variables are not the decision variables in the
// MathematicalProgram.
// @param rhs The right-hand side of the linear equality constraint.
void AddLinearEqualityConstraint(
const std::vector<double>& coeff_prog_vars,
const std::vector<int>& prog_vars_indices,
const std::vector<double>& coeff_X_entries,
const std::vector<EntryInX>& X_entries,
const std::vector<double>& coeff_free_vars,
const std::vector<FreeVariableIndex>& free_vars_indices, double rhs);
void RegisterMathematicalProgramDecisionVariables(
const MathematicalProgram& prog);
// Registers the program decision variable with index `variable_index` into
// SDPA and adds lower and upper bounds on that variable.
// This function should only be called within
// RegisterMathematicalProgramDecisionVariables().
// We might need to add more slack variables into the block diagonal matrix X,
// so as to incorporate the bounds as equality constraints.
// @param block_index The index of the block in X that this new variable
// belongs to.
// @param[in/out] new_X_var_count The number of variables in this block before
// and after registering this decision variable.
void RegisterSingleMathematicalProgramDecisionVariable(double lower_bound,
double upper_bound,
int variable_index,
int block_index,
int* new_X_var_count);
// Add the bounds on a variable that has been registered.
// This function should only be called within
// RegisterMathematicalProgramDecisionVariables().
// We might need to add more slack variables into the block diagonal matrix X,
// so as to incorporate the bounds as equality constraints.
// @param block_index The index of the block in X that the new slack variables
// belongs to.
// @param[in/out] new_X_var_count The number of variables in this block before
// and after adding the variable bounds.
void AddBoundsOnRegisteredDecisionVariable(double lower_bound,
double upper_bound,
int variable_index,
int block_index,
int* new_X_var_count);
// Sum up all the linear costs in prog, store the result in SDPA free format.
void AddLinearCostsFromProgram(const MathematicalProgram& prog);
// Add both the linear constraints lower <= a'x <= upper and the linear
// equality constraints a'x = rhs to SDPA free format. */
void AddLinearConstraintsFromProgram(const MathematicalProgram& prog);
template <typename Constraint>
void AddLinearConstraintsHelper(
const MathematicalProgram& prog,
const Binding<Constraint>& linear_constraint, bool is_equality_constraint,
int* linear_constraint_slack_entry_in_X_count);
void AddLinearMatrixInequalityConstraints(const MathematicalProgram& prog);
void AddLorentzConeConstraints(const MathematicalProgram& prog);
void AddRotatedLorentzConeConstraints(const MathematicalProgram& prog);
// Called at the end of the constructor.
void Finalize();
// X_blocks_ just stores the size and category of each block in the
// block-diagonal matrix X.
std::vector<BlockInX> X_blocks_;
std::vector<Eigen::Triplet<double>> C_triplets_;
std::vector<Eigen::Triplet<double>> d_triplets_;
// gᵢ is the i-th entry of g.
Eigen::VectorXd g_;
// A_triplets_[i] describes the nonzero entries in Aᵢ
std::vector<std::vector<Eigen::Triplet<double>>> A_triplets_;
// bᵢ is the i-th column of B. B_triplets records the nonzero entries in B.
std::vector<Eigen::Triplet<double>> B_triplets_;
/**
* Depending on the bounds and whether the variable appears in a PSD cone, a
* MathematicalProgram decision variable can be either an entry in X, a free
* variable, or a double constant in SDPA free format.
* We use std::nullptr_t to indicate that this variable hasn't been registered
* into SDPA free format yet.
*/
std::vector<std::variant<DecisionVariableInSdpaX, FreeVariableIndex, double,
std::nullptr_t>>
prog_var_in_sdpa_;
int num_X_rows_{0};
int num_free_variables_{0};
double constant_min_cost_term_{0.0};
std::vector<Eigen::SparseMatrix<double>> A_;
Eigen::SparseMatrix<double> C_;
Eigen::SparseMatrix<double> B_;
Eigen::SparseMatrix<double> d_;
};
} // namespace internal
/**
* SDPA format doesn't accept free variables, namely the problem it solves is
* in this form P1
*
* max tr(C * X)
* s.t tr(Aᵢ*X) = aᵢ
* X ≽ 0.
*
* Notice that the decision variable X has to be in the proper cone X ≽ 0, and
* it doesn't accept free variable (without the conic constraint). On the
* other hand, most real-world applications require free variables, namely
* problems in this form P2
*
* max tr(C * X) + dᵀs
* s.t tr(Aᵢ*X) + bᵢᵀs = aᵢ
* X ≽ 0
* s is free.
*
* In order to remove the free variables, we consider three approaches.
* 1. Replace a free variable s with two variables s = p - q, p ≥ 0, q ≥ 0.
* 2. First write the dual of the problem P2 as D2
*
* min aᵀy
* s.t ∑ᵢ yᵢAᵢ - C = Z
* Z ≽ 0
* Bᵀ * y = d,
*
* where bᵢᵀ is the i'th row of B.
* The last constraint Bᵀ * y = d means y = ŷ + Nt, where Bᵀ * ŷ = d, and N
* is the null space of Bᵀ. Hence, D2 is equivalent to the following
* problem, D3
*
* min aᵀNt + aᵀŷ
* s.t ∑ᵢ tᵢFᵢ - (C -∑ᵢ ŷᵢAᵢ) = Z
* Z ≽ 0,
*
* where Fᵢ = ∑ⱼ NⱼᵢAⱼ. D3 is the dual of the following primal problem P3
* without free variables
*
* max tr((C-∑ᵢ ŷᵢAᵢ)*X̂) + aᵀŷ
* s.t tr(FᵢX̂) = (Nᵀa)(i)
* X̂ ≽ 0.
*
* Then (X, s) = (X̂, B⁻¹(a - tr(Aᵢ X̂))) is the solution to the original
* problem P2.
* 3. Add a slack variable t, with the Lorentz cone constraint t ≥ sqrt(sᵀs).
*
*/
enum class RemoveFreeVariableMethod {
kTwoSlackVariables = 1, ///< Approach 1, replace a free variable s as
///< s = y⁺ - y⁻, y⁺ ≥ 0, y⁻ ≥ 0.
kNullspace = 2, ///< Approach 2, reformulate the dual problem by considering
///< the nullspace of the linear constraint in the dual.
kLorentzConeSlack = 3, ///< Approach 3, add a slack variable t with the
///< lorentz cone constraint t ≥ sqrt(sᵀs).
};
/**
* SDPA is a format to record an SDP problem
*
* max tr(C*X)
* s.t tr(Aᵢ*X) = gᵢ
* X ≽ 0
*
* or the dual of the problem
*
* min gᵀy
* s.t ∑ᵢ yᵢAᵢ - C ≽ 0
*
* where X is a symmetric block diagonal matrix.
* The format is described in http://plato.asu.edu/ftp/sdpa_format.txt. Many
* solvers, such as CSDP, DSDP, SDPA, sedumi and SDPT3, accept an SDPA format
* file as the input.
* This function reads a MathematicalProgram that can be formulated as above,
* and write an SDPA file.
* @param prog a program that contains an optimization program.
* @param file_name The name of the file, note that the extension will be added
* automatically.
* @param method If @p prog contains free variables (i.e., variables without
* bounds), then we need to remove these free variables to write the program
* in the SDPA format. Please refer to RemoveFreeVariableMethod for details
* on how to remove the free variables. @default is
* RemoveFreeVariableMethod::kNullspace.
* @retval is_success. Returns true if we can generate the SDPA file. The
* failure could be
* 1. @p prog cannot be captured by the formulation above.
* 2. @p prog cannot create a file with the given name, etc.
*/
bool GenerateSDPA(
const MathematicalProgram& prog, const std::string& file_name,
RemoveFreeVariableMethod method = RemoveFreeVariableMethod::kNullspace);
} // namespace solvers
} // namespace drake