-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·48 lines (35 loc) · 1.27 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import cv2
# Configuration
with open('cocolabels.txt', 'r') as f:
classNames = f.read().split('\n')
cgf_file = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weights_file = 'frozen_inference_graph.pb'
net = cv2.dnn_DetectionModel(weights_file, cgf_file)
net.setInputSize(320, 320)
net.setInputScale(1.0 / 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
# Handling image display and object detection
def display(keynum):
classIds, confs, bbox = net.detect(img, confThreshold=0.5)
print(classIds, bbox)
if len(classIds) != 0:
for classId, confidence, box in zip(classIds.flatten(), confs.flatten(), bbox):
cv2.rectangle(img, box, color=(255, 43, 244), thickness=3)
cv2.putText(img, classNames[classId - 1], (box[0] + 10,
box[1] + 30), cv2.FONT_HERSHEY_DUPLEX, 1, (255, 43, 244), 2)
cv2.imshow("Output", img)
cv2.waitKey(keynum)
choice = input('(img/webcam) ? : ')
choice.lower()
if choice == 'img':
image = input('image file name: ')
img = cv2.imread(f'{image}')
display(0)
elif choice == 'webcam':
cap = cv2.VideoCapture(0)
cap.set(3, 640)
cap.set(4, 480)
while True:
success, img = cap.read()
display(1)