forked from neurotrader888/VolatilityHawkes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhawkes.py
174 lines (136 loc) · 5.88 KB
/
hawkes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import pandas as pd
import numpy as np
import pandas_ta as ta
import matplotlib.pyplot as plt
import scipy
def plot_two_axes(series1, *ex_series):
plt.style.use('dark_background')
ax = series1.plot(color='green')
ax2 = ax.twinx()
for i, series in enumerate(ex_series):
series.plot(ax=ax2, alpha=0.5)
#plt.show()
def hawkes_process(data: pd.Series, kappa: float):
assert(kappa > 0.0)
alpha = np.exp(-kappa)
arr = data.to_numpy()
output = np.zeros(len(data))
output[:] = np.nan
for i in range(1, len(data)):
if np.isnan(output[i - 1]):
output[i] = arr[i]
else:
output[i] = output[i - 1] * alpha + arr[i]
return pd.Series(output, index=data.index) * kappa
def vol_signal(close: pd.Series, vol_hawkes: pd.Series, lookback:int):
signal = np.zeros(len(close))
q05 = vol_hawkes.rolling(lookback).quantile(0.05)
q95 = vol_hawkes.rolling(lookback).quantile(0.95)
last_below = -1
curr_sig = 0
for i in range(len(signal)):
if vol_hawkes.iloc[i] < q05.iloc[i]:
last_below = i
curr_sig = 0
if vol_hawkes.iloc[i] > q95.iloc[i] \
and vol_hawkes.iloc[i - 1] <= q95.iloc[i - 1] \
and last_below > 0 :
change = close.iloc[i] - close.iloc[last_below]
if change > 0.0:
curr_sig = 1
else:
curr_sig = -1
signal[i] = curr_sig
return signal
def get_trades_from_signal(data: pd.DataFrame, signal: np.array):
# Gets trade entry and exit times from a signal
# that has values of -1, 0, 1. Denoting short,flat,and long.
# No position sizing.
long_trades = []
short_trades = []
close_arr = data['close'].to_numpy()
last_sig = 0.0
open_trade = None
idx = data.index
for i in range(len(data)):
if signal[i] == 1.0 and last_sig != 1.0: # Long entry
if open_trade is not None:
open_trade[2] = idx[i]
open_trade[3] = close_arr[i]
short_trades.append(open_trade)
open_trade = [idx[i], close_arr[i], -1, np.nan]
if signal[i] == -1.0 and last_sig != -1.0: # Short entry
if open_trade is not None:
open_trade[2] = idx[i]
open_trade[3] = close_arr[i]
long_trades.append(open_trade)
open_trade = [idx[i], close_arr[i], -1, np.nan]
if signal[i] == 0.0 and last_sig == -1.0: # Short exit
open_trade[2] = idx[i]
open_trade[3] = close_arr[i]
short_trades.append(open_trade)
open_trade = None
if signal[i] == 0.0 and last_sig == 1.0: # Long exit
open_trade[2] = idx[i]
open_trade[3] = close_arr[i]
long_trades.append(open_trade)
open_trade = None
last_sig = signal[i]
long_trades = pd.DataFrame(long_trades, columns=['entry_time', 'entry_price', 'exit_time', 'exit_price'])
short_trades = pd.DataFrame(short_trades, columns=['entry_time', 'entry_price', 'exit_time', 'exit_price'])
long_trades['percent'] = (long_trades['exit_price'] - long_trades['entry_price']) / long_trades['entry_price']
short_trades['percent'] = -1 * (short_trades['exit_price'] - short_trades['entry_price']) / short_trades['entry_price']
long_trades = long_trades.set_index('entry_time')
short_trades = short_trades.set_index('entry_time')
return long_trades, short_trades
data = pd.read_csv('BTCUSDT3600.csv')
data['date'] = data['date'].astype('datetime64[s]')
data = data.set_index('date')
# Normalize volume
norm_lookback = 336
data['atr'] = ta.atr(np.log(data['high']), np.log(data['low']), np.log(data['close']), norm_lookback)
data['norm_range'] = (np.log(data['high']) - np.log(data['low'])) / data['atr']
#plot_two_axes(np.log(data['close']), data['norm_range'])
data['v_hawk'] = hawkes_process(data['norm_range'], 0.1)
data['sig'] = vol_signal(data['close'], data['v_hawk'], 168)
data['next_return'] = np.log(data['close']).diff().shift(-1)
data['signal_return'] = data['sig'] * data['next_return']
win_returns = data[data['signal_return'] > 0]['signal_return'].sum()
lose_returns = data[data['signal_return'] < 0]['signal_return'].abs().sum()
signal_pf = win_returns / lose_returns
plt.style.use('dark_background')
data['signal_return'].cumsum().plot()
long_trades, short_trades = get_trades_from_signal(data, data['sig'].to_numpy())
long_win_rate = len(long_trades[long_trades['percent'] > 0]) / len(long_trades)
short_win_rate = len(short_trades[short_trades['percent'] > 0]) / len(short_trades)
long_average = long_trades['percent'].mean()
short_average = short_trades['percent'].mean()
time_in_market = len(data[data['sig'] != 0.0]) / len(data)
print("Profit Factor", signal_pf)
print("Long Win Rate", long_win_rate)
print("Long Average", long_average)
print("Short Win Rate", short_win_rate)
print("Short Average", short_average)
print("Time In Market", time_in_market)
'''
# Code for the heatmap
kappa_vals = [0.5, 0.25, 0.1, 0.05, 0.01]
lookback_vals = [24, 48, 96, 168, 336]
pf_df = pd.DataFrame(index=lookback_vals, columns=kappa_vals)
for lb in lookback_vals:
for k in kappa_vals:
data['v_hawk'] = hawkes_process(data['norm_range'], k)
data['sig'] = vol_signal(data['close'], data['v_hawk'], lb)
data['next_return'] = np.log(data['close']).diff().shift(-1)
data['signal_return'] = data['sig'] * data['next_return']
win_returns = data[data['signal_return'] > 0]['signal_return'].sum()
lose_returns = data[data['signal_return'] < 0]['signal_return'].abs().sum()
signal_pf = win_returns / lose_returns
pf_df.loc[lb, k] = float(signal_pf)
plt.style.use('dark_background')
import seaborn as sns
pf_df = pf_df.astype(float)
sns.heatmap(pf_df, annot=True, fmt='f')
plt.xlabel('Hawkes Kappa')
plt.ylabel('Threshold Lookback')
'''