-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss.py
65 lines (52 loc) · 2.39 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
'''
center loss code from: https://github.com/jxgu1016/MNIST_center_loss_pytorch
'''
import torch
import torch.nn as nn
from torch.autograd.function import Function
class DDALoss(nn.Module):
def __init__(self, num_classes, feat_dim, lamb=0.01, gamma=3.0):
super(DDALoss, self).__init__()
self.centers = nn.Parameter(torch.FloatTensor(num_classes, feat_dim))
self.centerloss = CenterLossFunction.apply
self.feat_dim = feat_dim
self.reset_params()
self.log_softmax = nn.LogSoftmax(dim=1)
self.nllloss = nn.NLLLoss()
self.lamb = lamb
self.gamma = gamma
def reset_params(self):
nn.init.kaiming_normal_(self.centers.data.t())
def forward(self, feat, label):
batch_size = feat.size(0)
feat = feat.view(batch_size, -1)
# center loss
if feat.size(1) != self.feat_dim:
raise ValueError("Centers' dimensions: {0} should be equal to input feature's \
dim: {1}".format(self.feat_dim, feat.size(1)))
centerloss = self.centerloss(feat, label, self.centers, batch_size)
# DDA Loss
dist = -((feat.unsqueeze(1) - self.centers.unsqueeze(0)).pow(2).sum(dim=2))
scores = self.log_softmax(dist)
ddaloss = self.nllloss(scores, label) / batch_size / 2.0
loss = self.lamb * centerloss + self.gamma * ddaloss
return loss, centerloss, ddaloss
class CenterLossFunction(Function):
@staticmethod
def forward(ctx, feature, label, centers, batch_size):
ctx.save_for_backward(feature, label, centers, batch_size)
centers_batch = centers.index_select(0, label.long())
return (feature - centers_batch).pow(2).sum() / 2.0 / batch_size
@staticmethod
def backward(ctx, grad_output):
feature, label, centers, batch_size = ctx.saved_tensors
centers_batch = centers.index_select(0, label.long())
diff = centers_batch - feature
# init every iteration
counts = centers.new_ones(centers.size(0))
ones = centers.new_ones(label.size(0))
grad_centers = centers.new_zeros(centers.size())
counts.scatter_add_(0, label.long(), ones)
grad_centers.scatter_add_(0, label.unsqueeze(1).expand(feature.size()).long(), diff)
grad_centers = grad_centers / counts.view(-1, 1)
return - grad_output * diff / batch_size, None, grad_centers, None