-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
144 lines (117 loc) · 5.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import os
import argparse
import torch
import torch.nn as nn
from torchvision import datasets, transforms
from model import Net
from utils import AverageMeter
from tensorboardX import SummaryWriter
class DisturbLabel(torch.nn.Module):
def __init__(self, alpha, C):
super(DisturbLabel, self).__init__()
self.alpha = alpha
self.C = C
# Multinoulli distribution
self.p_c = (1 - ((C - 1)/C) * (alpha/100))
self.p_i = (1 / C) * (alpha / 100)
def forward(self, y):
# convert classes to index
y_tensor = y
y_tensor = y_tensor.type(torch.LongTensor).view(-1, 1)
# create disturbed labels
depth = self.C
y_one_hot = torch.ones(y_tensor.size()[0], depth) * self.p_i
y_one_hot.scatter_(1, y_tensor, self.p_c)
y_one_hot = y_one_hot.view(*(tuple(y.shape) + (-1,)))
# sample from Multinoulli distribution
distribution = torch.distributions.OneHotCategorical(y_one_hot)
y_disturbed = distribution.sample()
y_disturbed = y_disturbed.max(dim=1)[1] # back to categorical
return y_disturbed
def main():
# parameters
parser = argparse.ArgumentParser(description='PyTorch DisturbLabel')
parser.add_argument('--mode', type=str, default='bothreg')
parser.add_argument('--alpha', type=int, default=20)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--test-batch-size', type=int, default=64)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--device', type=str, default='gpu')
parser.add_argument('--num-workers', type=int, default=4)
args = parser.parse_args()
global writer
writer = SummaryWriter(os.path.join('logs', args.mode, 'tb'))
# GPU/CPU
device = torch.device('cuda' if args.device == 'gpu' else 'cpu')
# Reading MNIST
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args.test_batch_size, shuffle=True,
num_workers=args.num_workers, pin_memory=True)
# Model
model = Net(args.mode).to(device)
# Optimizer + Loss
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
criterion = nn.CrossEntropyLoss().to(device)
disturb = None
if args.mode == 'disturblabel' or args.mode == 'bothreg':
disturb = DisturbLabel(alpha=args.alpha, C=10)
# Train and Test
for epoch in range(1, args.epochs + 1):
torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[40, 60, 80], gamma=0.1)
train(args, model, device, train_loader, optimizer, criterion, epoch, disturb)
test(args, model, device, test_loader, criterion, epoch)
def train(args, model, device, train_loader, optimizer, criterion, epoch, disturb):
model.train()
correct = 0
losses = AverageMeter()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
# disturb labels
if args.mode == 'disturblabel' or args.mode == 'bothreg':
target = disturb(target).to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# calculate error rate
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
losses.update(loss.item(), data.size(0))
train_error = 100 - (100. * correct / len(train_loader.dataset))
print('Epoch [{0}] Train Loss: {1:.4f} | Error: {2:.2f}%'.format(epoch, losses.avg, train_error))
writer.add_scalar('{0}/train_error'.format(args.mode), train_error, epoch)
writer.add_scalar('{0}/train_loss'.format(args.mode), losses.avg, epoch)
def test(args, model, device, test_loader, criterion, epoch):
model.eval()
correct = 0
losses = AverageMeter()
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
loss = criterion(output, target) # sum up batch loss
# calculate error rate
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
losses.update(loss.item(), data.size(0))
test_error = 100 - (100. * correct / len(test_loader.dataset))
print('Epoch [{0}] Test Loss: {1:.4f} | Error: {2:.2f}%\n'.format(epoch, losses.avg, test_error))
writer.add_scalar('{0}/test_error'.format(args.mode), test_error, epoch)
writer.add_scalar('{0}/test_loss'.format(args.mode), losses.avg, epoch)
if __name__ == '__main__':
main()