diff --git a/docs/docs.nim b/docs/docs.nim index d23ee26..ddf7f64 100644 --- a/docs/docs.nim +++ b/docs/docs.nim @@ -1,31 +1,33 @@ ## **Navigation:** [nimCSO](nimcso.html) (core) | [Changelog](_._/docs/changelog.html) | [nimcso/bitArrayAutoconfigured](nimcso/bitArrayAutoconfigured.html) | ## -## |GitHub| |License| |ArticleDraft| ## -## |TestMac| |TestLin| |TestWin| ## -## .. |GitHub| image:: https://img.shields.io/badge/GitHub-Repository-Badge?logo=github&color=black +## .. figure:: https://img.shields.io/badge/GitHub-Repository-Badge?logo=github&color=black ## :alt: GitHub ## :target: https://github.com/amkrajewski/nimCSO ## -## .. |License| image:: https://img.shields.io/badge/License-MIT-yellow.svg +## .. figure:: https://img.shields.io/badge/License-MIT-yellow.svg ## :alt: MIT License ## :target: https://opensource.org/licenses/MIT ## -## .. |ArticleDraft| image:: https://img.shields.io/badge/JOSS%20Article-Draft-Badge?color=orange +## .. figure:: https://img.shields.io/badge/JOSS%20Article-Draft-Badge?color=orange ## :alt: JOSS Article Draft ## :target: https://github.com/amkrajewski/nimCSO/blob/1588ef66cbce11b4aa4a7243a41b274d324789eb/paper/paper.pdf ## -## .. |TestMac| image:: https://github.com/amkrajewski/nimCSO/actions/workflows/testingOnPush_Apple.yaml/badge.svg +## +## +## .. figure:: https://github.com/amkrajewski/nimCSO/actions/workflows/testingOnPush_Apple.yaml/badge.svg ## :alt: macOS Testing ## -## .. |TestLin| image:: https://github.com/amkrajewski/nimCSO/actions/workflows/testingOnPush_Linux.yaml/badge.svg +## .. figure:: https://github.com/amkrajewski/nimCSO/actions/workflows/testingOnPush_Linux.yaml/badge.svg ## :alt: Linux Testing ## -## .. |TestWin| image:: https://github.com/amkrajewski/nimCSO/actions/workflows/testingOnPush_Windows.yaml/badge.svg +## .. figure:: https://github.com/amkrajewski/nimCSO/actions/workflows/testingOnPush_Windows.yaml/badge.svg ## :alt: Windows Testing ## +## +## ## **nim** **C**omposition **S**pace **O**ptimization is a high-performance tool implementing several methods for selecting components (data dimensions) in compositional datasets, which ## optimize the data availability and density for applications such as machine learning (ML) given a constraint on the number of components to be selected, so that they can be designed in ## a way balancing their accuracy and domain of applicability. Making said choice is a **combinatorically hard