-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_iprp.rs
177 lines (137 loc) · 4.65 KB
/
generate_iprp.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#[macro_use]
extern crate bencher;
extern crate retrieval_importance;
use bencher::Bencher;
use retrieval_importance::mle::tensors::DenseMatrix;
use retrieval_importance::mle::prob as prob;
benchmark_group!(generate_iprp,
generate_iprp__no_opt_tiny, generate_iprp__tensors_tiny, generate_iprp__from_tensors_tiny,
generate_iprp__no_opt, generate_iprp__tensors, generate_iprp__from_tensors,
generate_iprp__no_opt_larger, generate_iprp__tensors_larger, generate_iprp__from_tensors_larger
);
benchmark_main!(generate_iprp);
const TINY_M: usize = 100;
const TINY_K: usize = 10;
const TINY_P: [f64; TINY_M] = [0.5_f64; TINY_M];
const MEDIUM_M: usize = 1000;
const MEDIUM_K: usize = 50;
const MEDIUM_P: [f64; MEDIUM_M] = [0.5_f64; MEDIUM_M];
const LARGE_M: usize = 5000;
const LARGE_K: usize = 500;
const LARGE_P: [f64; LARGE_M] = [0.5_f64; LARGE_M];
#[allow(non_snake_case)]
fn generate_iprp__no_opt_tiny(bench: &mut Bencher) {
bench.iter(|| {
bencher::black_box(compute_prob(&TINY_P, TINY_K, TINY_M));
})
}
#[allow(non_snake_case)]
fn generate_iprp__tensors_tiny(bench: &mut Bencher) {
bench.iter(|| {
bencher::black_box(compute_prob_tensors(&TINY_P, TINY_K, TINY_M));
})
}
#[allow(non_snake_case)]
fn generate_iprp__from_tensors_tiny(bench: &mut Bencher) {
let mut IP = DenseMatrix::new(TINY_K + 1, TINY_M + 2);
let mut RP = DenseMatrix::new(TINY_K + 1, TINY_M + 2);
bench.iter(|| {
bencher::black_box(prob::compute_prob_from_tensors(
&TINY_P, TINY_K, TINY_M, &mut IP, &mut RP));
})
}
#[allow(non_snake_case)]
fn generate_iprp__no_opt(bench: &mut Bencher) {
bench.iter(|| {
bencher::black_box(compute_prob(&MEDIUM_P, MEDIUM_K, MEDIUM_M));
})
}
#[allow(non_snake_case)]
fn generate_iprp__tensors(bench: &mut Bencher) {
bench.iter(|| {
bencher::black_box(compute_prob_tensors(&MEDIUM_P, MEDIUM_K, MEDIUM_M));
})
}
#[allow(non_snake_case)]
fn generate_iprp__from_tensors(bench: &mut Bencher) {
let mut IP = DenseMatrix::new(MEDIUM_K + 1, MEDIUM_M + 2);
let mut RP = DenseMatrix::new(MEDIUM_K + 1, MEDIUM_M + 2);
bench.iter(|| {
bencher::black_box(prob::compute_prob_from_tensors(
&MEDIUM_P, MEDIUM_K, MEDIUM_M, &mut IP, &mut RP));
})
}
#[allow(non_snake_case)]
fn generate_iprp__no_opt_larger(bench: &mut Bencher) {
bench.iter(|| {
bencher::black_box(compute_prob(&LARGE_P, LARGE_K, LARGE_M));
})
}
#[allow(non_snake_case)]
fn generate_iprp__tensors_larger(bench: &mut Bencher) {
bench.iter(|| {
bencher::black_box(compute_prob_tensors(&LARGE_P, LARGE_K, LARGE_M));
})
}
#[allow(non_snake_case)]
fn generate_iprp__from_tensors_larger(bench: &mut Bencher) {
let mut IP = DenseMatrix::new(LARGE_K + 1, LARGE_M + 2);
let mut RP = DenseMatrix::new(LARGE_K + 1, LARGE_M + 2);
bench.iter(|| {
bencher::black_box(prob::compute_prob_from_tensors(
&LARGE_P, LARGE_K, LARGE_M, &mut IP, &mut RP));
})
}
#[allow(non_snake_case)]
fn compute_prob(
p: &[f64],
K: usize,
M: usize
) -> (Vec<Vec<f64>>, Vec<Vec<f64>>) {
// TODO We should reuse a preallocated buffer per thread here
// TODO These should be contiguous arrays to avoid pointer chasing
// TODO We also waste some space here to not have to compute positions...
let mut IP = vec![vec![0_f64; M + 2]; K + 1];
let mut RP = vec![vec![0_f64; M + 2]; K + 1];
IP[0][0] = 1.0;
RP[0][M+1] = 1.0;
// TODO maybe we should manually precompute a 1.0 - p vector? Might double the loads though
// TODO Make sure the compiler removes bounds checks here
for j in 1..M+1 {
IP[0][j] = IP[0][j-1] * (1.0 - p[j-1]);
for k in 1..K+1 {
IP[k][j] = IP[k][j-1] * (1.0 - p[j-1]) + IP[k-1][j-1] * p[j-1];
}
}
for j in (1..M+1).rev() {
RP[0][j] = RP[0][j+1] * (1.0 - p[j-1]);
for k in 1..K+1 {
RP[k][j] = RP[k][j+1] * (1.0 - p[j-1]) + RP[k-1][j+1] * p[j-1];
}
}
(IP, RP)
}
#[allow(non_snake_case,unused)]
fn compute_prob_tensors(
p: &[f64],
K: usize,
M: usize
) -> (DenseMatrix, DenseMatrix) {
let mut IP = DenseMatrix::new(K + 1, M + 2);
let mut RP = DenseMatrix::new(K + 1, M + 2);
IP[[0,0]] = 1.0;
RP[[0,M+1]] = 1.0;
for j in 1..M+1 {
IP[[0,j]] = IP[[0,j-1]] * (1.0 - p[j-1]);
for k in 1..K+1 {
IP[[k,j]] = IP[[k,j-1]] * (1.0 - p[j-1]) + IP[[k-1, j-1]] * p[j-1];
}
}
for j in (1..M+1).rev() {
RP[[0,j]] = RP[[0,j+1]] * (1.0 - p[j-1]);
for k in 1..K+1 {
RP[[k,j]] = RP[[k,j+1]] * (1.0 - p[j-1]) + RP[[k-1,j+1]] * p[j-1];
}
}
(IP, RP)
}