-
databases
- Databases and SQL for Data Science, IBM, Coursera
-
deep_learning
- "TensorFlow for Deep Learning (O'Reilly)", Bharath Ramsundar & Reza Bosagh Zadeh
- "Fundamentals of Deep Learning (O'Reilly)", Nikhil Buduma with contributions by Nicholas Locascio
-
interview_questions
- 109 Commonly Asked Data Science Interview Questions
- The Springboard Data Science Career Track's main units are wrapped up with interview practice questions. I am collecting the answeres in the file springbrd_interview_practice.ipynb. View in jupyter nbviewer
-
linear_algebra
- Some introductory concepts and python representations
-
machine_learning
- harvard_cs109.ipynb: CS109 Data Science, Harvard University
- sup_learning_scikit_learn.ipynb: Supervised Learning with scikit-learn, DataCamp
- advanced_machine_learning_tensorflow_gcp: Advanced Machine Learning with TensorFlow on Google Cloud Platform Specialization, Coursera
- machine_learning_tensorflow_gcp:Machine Learning with TensorFlow on Google Cloud Platform Specialization, Coursera
- aws_ml_path_data_science: AWS Machine Learning Path, Data Scientist
-
programming
- data_structures_and_algorithms
- "Programming in Python 3, A Complete Introduction to the Python Language", Mark Summerfield
- "Elements of Programming Interview in Python", Adnan Aziz, Tsung-Hsien Lee, Amit Prakash
- Python3 documentation
- Learn to Program: Crafting Quality Code, University of Toronto, Coursera
- elements_prog_interview: Chapter overview + coding exercises of Elements of Programming Interviews in Python by Adnan Aziz, Tsung-Hsien Lee, Amit Prakash
- interview_practice: leetcode, mock interviews
- python_programmer_track_datacamp: Python Programmer Track, DataCamp
- debugging_testing_profiling.ipynb: Notes from Crafting Quality Code, University of Toronto, Coursera: https://www.coursera.org/learn/program-code/home/welcome
- mit_datastructures_algos.ipynb: MIT 6.006 Introduction to Algorithms, Fall 2011, https://www.youtube.com/watch?v=HtSuA80QTyo&list=PLUl4u3cNGP61Oq3tWYp6V_F-5jb5L2iHb&index=1
- data_structures_and_algorithms
-
statistics
- foundations_of_statistics.ipynb: Random Variables, Sampling Distributions, Confidence Intervals, Khan Academy
- infer_statistics_python.ipynb: Statistical Thinking in Python (Part 1), DataCamp
-
quick_notes.ipynb
- Random notes