-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathallplotter.py
718 lines (622 loc) · 34.1 KB
/
allplotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
"""
TODO
----
freq. response calculations
refresh lines without refreshing whole plot
export df's
"""
import pandas as pd
import numpy as np
import math
from matplotlib import pyplot as plt
from matplotlib.ticker import AutoMinorLocator
from scipy.interpolate import make_interp_spline, BSpline #interpolation
from scipy.interpolate import griddata as gd
from tkinter import *
from tkinter import ttk
from PIL import Image, ImageTk
from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
DEBUG = 0
DEFAULT_VALVE = 'E88CC'
DEFAULT_VSUPPLY = 265
DEFAULT_Ra = 33000
DEFAULT_Rk = 470
DEFAULT_INPUTSIGNAL = 2000
DEFAULT_XMAX = 300
DEFAULT_YMAX = 10
DEFAULT_RL = 1000000
DEFAULT_CO = 22
#DEFAULT_CK = 1
DEFAULT_RG = 68000
#DEFAULT_CF = 0
class mclass:
def __init__(self, window):
self.window = window
self.fig = Figure(figsize=(11,8))
self.ax = self.fig.add_subplot(111)
# read valve specs and grid lines from csv
self.read_valvedata()
self.read_valvespecs()
# build UI
window.columnconfigure(0, weight=1)
window.columnconfigure(1, weight=1)
window.columnconfigure(2, weight=3)
window.columnconfigure(3, weight=1)
window.columnconfigure(4, weight=1)
# title
self.title = Label(window, text='andmarti Load Line Plotter', fg='#1C5AAC', font=('Courier New', 24, 'bold'))
self.title.grid(row=0, column=0, columnspan=5, padx=10, sticky=N)
# circuit
io = Image.open('images/circuit.jpg')
self.img = ImageTk.PhotoImage(io)
self.circuit = Label(window, image=self.img)
self.circuit.grid(row=6, column=2, rowspan=10, sticky=N)
# plot
self.canvas = FigureCanvasTkAgg(self.fig, master=self.window)
self.canvas.get_tk_widget().grid(row=1, column=4, rowspan=44, columnspan=3, sticky=W, padx=0, pady=0)
self.canvas.mpl_connect('motion_notify_event', self.motion_hover)
self.ax.grid(which="both", axis='both', color='slategray', linestyle='--', linewidth=0.7, alpha=0.5)
self.ax.set_ylabel('Ia, mA', fontsize=16, loc='center', labelpad=20)
self.ax.set_xlabel('Va, V', fontsize=16, loc='center', labelpad=20)
# valve
self.lbl_valve = Label(window, text="VALVE", font=('Courier New', 12), background=self.window['bg'])
self.lbl_valve.grid(row=1, column=0, sticky=W, padx=50, pady=5)
self.str_valve = StringVar()
self.str_valve.set(DEFAULT_VALVE)
self.cmb_valve = ttk.Combobox(window, values=self.df['valve'].drop_duplicates().values.tolist(), textvariable=self.str_valve, font=('Courier New', 12), width=13)
self.cmb_valve['state'] = 'readonly'
self.cmb_valve.grid(row=1, column=1, sticky=W, padx=5, pady=5)
self.cmb_valve.bind('<<ComboboxSelected>>', self.valve_changed)
# Vs
self.lbl_supply = Label(window, text="Vsupply, V", font=('Courier New', 12), background=self.window['bg'], width=20, anchor='w')
self.lbl_supply.grid(row=2, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_supply = StringVar()
self.str_supply.set(DEFAULT_VSUPPLY)
self.etr_supply = Entry(window, textvariable=self.str_supply, font=('Courier New', 12), width=15, background='misty rose')
self.etr_supply.grid(row=2, column=1, rowspan=1, sticky=W, padx=2, pady=5)
self.lbl_Ra = Label(window, text="Ra, ohms", font=('Courier New', 12), background=self.window['bg'])
self.lbl_Ra.grid(row=3, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_Ra = StringVar()
self.str_Ra.set(DEFAULT_Ra)
self.etr_Ra = Entry(window, textvariable=self.str_Ra, font=('Courier New', 12), width=15, background='misty rose')
self.etr_Ra.grid(row=3, column=1, rowspan=1, sticky=W, padx=2, pady=5)
self.lbl_Rk = Label(window, text="Rk, ohms", font=('Courier New', 12), background=self.window['bg'])
self.lbl_Rk.grid(row=4, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_Rk = StringVar()
self.str_Rk.set(DEFAULT_Rk)
self.etr_Rk = Entry(window, textvariable=self.str_Rk, font=('Courier New', 12), width=15, background='misty rose')
self.etr_Rk.grid(row=4, column=1, rowspan=1, sticky=W, padx=2, pady=5)
self.lbl_Vq = Label(window, text="Vq, V", font=('Courier New', 12), background=self.window['bg'])
self.lbl_Vq.grid(row=5, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_Vq = StringVar()
self.lbl_Vqval = Label(window, textvariable=self.str_Vq, font=('Courier New', 12), width=15, anchor="w")
self.lbl_Vqval.grid(row=5, column=1, rowspan=1, sticky=W, padx=2, pady=5)
self.lbl_Iq = Label(window, text="Iq, mA", font=('Courier New', 12), background=self.window['bg'])
self.lbl_Iq.grid(row=6, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_Iq = StringVar()
self.lbl_Iqval = Label(window, textvariable=self.str_Iq, font=('Courier New', 12), width=15, anchor="w")
self.lbl_Iqval.grid(row=6, column=1, rowspan=1, sticky=W, padx=2, pady=5)
self.lbl_Vgk = Label(window, text="Vgk, V", font=('Courier New', 12), background=self.window['bg'])
self.lbl_Vgk.grid(row=7, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_Vgk = StringVar()
self.lbl_Vgkval = Label(window, textvariable=self.str_Vgk, font=('Courier New', 12), width=15, anchor="w")
self.lbl_Vgkval.grid(row=7, column=1, rowspan=1, sticky=W, padx=2, pady=5)
self.lbl_Xmax = Label(window, text="Xmax, V", font=('Courier New', 12), background=self.window['bg'])
self.lbl_Xmax.grid(row=8, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_Xmax = StringVar()
self.str_Xmax.set(DEFAULT_XMAX)
self.etr_Xmax = Entry(window, textvariable=self.str_Xmax, font=('Courier New', 12), width=15, background='misty rose')
self.etr_Xmax.grid(row=8, column=1, rowspan=1, sticky=W, padx=2, pady=5)
self.lbl_Ymax = Label(window, text="Ymax, mA", font=('Courier New', 12), background=self.window['bg'])
self.lbl_Ymax.grid(row=9, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_Ymax = StringVar()
self.str_Ymax.set(DEFAULT_YMAX)
self.etr_Ymax = Entry(window, textvariable=self.str_Ymax, font=('Courier New', 12), width=15, background='misty rose')
self.etr_Ymax.grid(row=9, column=1, rowspan=1, sticky=W, padx=2, pady=5)
self.lbl_ck = Label(window, text="Ck, uF", font=('Courier New', 12), background=self.window['bg'])
self.lbl_ck.grid(row=10, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_ck = StringVar()
#self.str_ck.set(DEFAULT_CK)
self.etr_ck = Entry(window, textvariable=self.str_ck, font=('Courier New', 12), width=15)
self.etr_ck.grid(row=10, column=1, rowspan=1, sticky=W, padx=2, pady=5)
self.lbl_rl = Label(window, text="Rl, ohms", font=('Courier New', 12), background=self.window['bg'])
self.lbl_rl.grid(row=11, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_rl = StringVar()
self.str_rl.set(DEFAULT_RL)
self.etr_rl = Entry(window, textvariable=self.str_rl, font=('Courier New', 12), width=15)
self.etr_rl.grid(row=11, column=1, rowspan=1, sticky=W, padx=2, pady=5)
# input signal
self.lbl_inputsignal = Label(window, text="input signal, mVpp", font=('Courier New', 12), background=self.window['bg'], width=18)
self.lbl_inputsignal.grid(row=12, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_inputsignal = StringVar()
self.str_inputsignal.set(DEFAULT_INPUTSIGNAL)
self.etr_inputsignal = Entry(window, textvariable=self.str_inputsignal, font=('Courier New', 12), width=15, background='misty rose')
self.etr_inputsignal.grid(row=12, column=1, rowspan=1, sticky=W, padx=2, pady=5)
# Rg
self.lbl_rg = Label(window, text="Rg, ohms", font=('Courier New', 12), background=self.window['bg'])
self.lbl_rg.grid(row=13, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_rg = StringVar()
self.str_rg.set(DEFAULT_RG)
self.etr_rg = Entry(window, textvariable=self.str_rg, font=('Courier New', 12), width=15)
self.etr_rg.grid(row=13, column=1, rowspan=1, sticky=W, padx=2, pady=5)
# Co
self.lbl_co = Label(window, text="Co, nF", font=('Courier New', 12), background=self.window['bg'])
self.lbl_co.grid(row=14, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_co = StringVar()
self.str_co.set(DEFAULT_CO)
self.etr_co = Entry(window, textvariable=self.str_co, font=('Courier New', 12), width=15)
self.etr_co.grid(row=14, column=1, rowspan=1, sticky=W, padx=2, pady=5)
# Cf
self.lbl_cf = Label(window, text="Cf, pF", font=('Courier New', 12), background=self.window['bg'])
self.lbl_cf.grid(row=15, column=0, rowspan=1, sticky=W, padx=50, pady=5)
self.str_cf = StringVar()
#self.str_cf.set(DEFAULT_CF)
self.etr_cf = Entry(window, textvariable=self.str_cf, font=('Courier New', 12), width=15)
self.etr_cf.grid(row=15, column=1, rowspan=1, sticky=W, padx=2, pady=5)
# bottom frame
fm = Frame(window)
# cathode loadline check
self.lbl_cathodeloadline = Label(fm, text="Cathode loadline", font=('Courier New', 12), background=self.window['bg'])
self.lbl_cathodeloadline.grid(row = 0, column = 0, pady=0, sticky='w')
self.chk_cathodeloadline_var = IntVar()
self.chk_cathodeloadline = Checkbutton(fm, variable=self.chk_cathodeloadline_var, onvalue = 1, offvalue = 0, height=1, font=('Courier New', 12),
command=self.chk_cathodeloadline_click, background=self.window['bg'], width=1, anchor="w")
self.chk_cathodeloadline.select()
self.chk_cathodeloadline.grid(row = 0, column = 1, columnspan=1, sticky='W')
# input signal swing check
self.lbl_input_signal_swing = Label(fm, text="input signal swing", font=('Courier New', 12), background=self.window['bg'])
self.lbl_input_signal_swing.grid(row = 1, column = 0, pady=0, sticky='w')
self.chk_input_signal_swing_var = IntVar()
self.chk_input_signal_swing = Checkbutton(fm, variable=self.chk_input_signal_swing_var, onvalue = 1, offvalue = 0, height=1, font=('Courier New', 12),
command=self.chk_input_signal_swing_click, background=self.window['bg'], width=1, anchor="w")
self.chk_input_signal_swing.select()
self.chk_input_signal_swing.grid(row = 1, column = 1, columnspan=1, sticky='W')
# interpolation check
self.lbl_showinterpolation = Label(fm, text="Show interpolation", font=('Courier New', 12), background=self.window['bg'])
self.lbl_showinterpolation.grid(row = 2, column = 0, pady=0, sticky='w')
self.chk_showinterpolation_var = IntVar()
self.chk_showinterpolation = Checkbutton(fm, variable=self.chk_showinterpolation_var, onvalue = 1, offvalue = 0, height=1, font=('Courier New', 12),
command=self.chk_showinterpolation_click, background=self.window['bg'], width=1, anchor="w")
self.chk_showinterpolation.grid(row = 2, column = 1, columnspan=1, sticky='W')
# valve specs label
self.str_specs = StringVar()
self.str_specs.set("Specs: ")
self.lbl_specs = Label(fm, textvariable=self.str_specs, font=('Courier New', 12), background=self.window['bg'])
self.lbl_specs.grid(row = 3, column = 0, columnspan=62, sticky='W')
# calculations label
self.str_calculations = StringVar()
self.str_calculations.set("Calculations: ")
self.lbl_calculations = Label(fm, textvariable=self.str_calculations, font=('Courier New', 12), fg='green', background=self.window['bg'])
self.lbl_calculations.grid(row = 4, column = 0, columnspan=62, sticky='W')
# cursor position
self.txt_coordinates = Text(fm, bd=0, bg=window['bg'], fg='red', height=1, wrap="none", state="normal", font=('Courier New', 12), background=self.window['bg'])
self.txt_coordinates.grid(row = 5, column = 0, columnspan=10, sticky='W')
self.txt_coordinates.config(highlightthickness = 0, borderwidth=0)
self.txt_coordinates.config(state=DISABLED)
fm.grid(row=45, column=0, padx=2, pady=0, columnspan=10, sticky='W')
#BUTTONS
fmbut = Frame(window)
self.button_quit = Button(fmbut, text="QUIT", command=self.quit, font=('Courier New', 12))
self.button_quit.grid(row=0, column=0, padx=10)
self.button_start = Button(fmbut, text="PLOT", command=self.change_state, font=('Courier New', 12))
self.button_start.grid(row=0, column=1, padx=10)
self.button_clear = Button(fmbut, text="CLEAR", command=self.clear_chart, font=('Courier New', 12), state='normal')
self.button_clear.grid(row=0, column=2, padx=10)
self.but_export = Button(fmbut, text="EXPORT", command=self.export, font=('Courier New', 12))
self.but_export.grid(row=0, column=3, padx=10)
fmbut.grid(row=20, column=0, padx=50, pady=0, columnspan=5, sticky='W')
# bind focus out events
self.etr_Xmax.bind("<FocusOut>", self.parameters_changed)
self.etr_Ra.bind("<FocusOut>", self.parameters_changed)
self.etr_supply.bind("<FocusOut>", self.parameters_changed)
self.etr_Rk.bind("<FocusOut>", self.parameters_changed)
self.etr_Ymax.bind("<FocusOut>", self.parameters_changed)
self.etr_rl.bind("<FocusOut>", self.parameters_changed)
self.etr_ck.bind("<FocusOut>", self.parameters_changed)
self.etr_inputsignal.bind("<FocusOut>", self.parameters_changed)
self.etr_Xmax.bind("<Return>", self.parameters_changed)
self.etr_Ra.bind("<Return>", self.parameters_changed)
self.etr_supply.bind("<Return>", self.parameters_changed)
self.etr_Rk.bind("<Return>", self.parameters_changed)
self.etr_Ymax.bind("<Return>", self.parameters_changed)
self.etr_rl.bind("<Return>", self.parameters_changed)
self.etr_ck.bind("<Return>", self.parameters_changed)
self.etr_inputsignal.bind("<Return>", self.parameters_changed)
self.etr_co.bind("<FocusOut>", self.parameters_changed)
self.etr_cf.bind("<FocusOut>", self.parameters_changed)
self.etr_rg.bind("<FocusOut>", self.parameters_changed)
self.etr_co.bind("<Return>", self.parameters_changed)
self.etr_cf.bind("<Return>", self.parameters_changed)
self.etr_rg.bind("<Return>", self.parameters_changed)
#end of ui
self.sechd = NONE
self.swingl = NONE
self.swingr = NONE
# Read XMAX and YMAX from specs
#self.updateMaxXY()
self.valve_changed(None)
#self.cmb_valve.focus_set()
self.etr_supply.icursor(len(self.str_supply.get()))
self.etr_supply.focus_set()
def parameters_changed(self, event):
self.change_state()
def valve_changed(self, event):
self.updateMaxXY()
self.change_state()
valve = self.str_valve.get()
d=self.specs.loc[self.specs['valve'] == valve ]
self.str_specs.set("Specs: mu: %s, ra: %s ohms, VaMax: %s V, Cga: %s pF, Cg to all but anode: %s pF, Pmax: %s W" % (
d['mu'].iloc[0],
d['ra'].iloc[0],
d['VaMax'].iloc[0],
d['Cga'].iloc[0],
d['CgAEA'].iloc[0],
d['Pmax'].iloc[0]
))
# upodate xmax and ymax from valve specs
def updateMaxXY(self):
valve = self.str_valve.get()
d=self.specs.loc[self.specs['valve'] == valve ]
DEFAULT_XMAX = d['DefaultXmax'].iloc[0]
DEFAULT_YMAX = d['DefaultYmax'].iloc[0]
self.ax.set_ylim(0, d['DefaultYmax'].iloc[0])
self.ax.set_xlim(0, d['DefaultXmax'].iloc[0])
if len(self.etr_Ymax.get()) != 0 and self.can_convert_to_float(self.etr_Ymax.get()) == False: return
if len(self.etr_Xmax.get()) != 0 and self.can_convert_to_float(self.etr_Xmax.get()) == False: return
self.ax.set_yticks(range(0, int(self.etr_Ymax.get())+1, 5))
self.ax.xaxis.set_minor_locator(AutoMinorLocator(5))
self.ax.yaxis.set_minor_locator(AutoMinorLocator(5))
self.ax.grid(which="both", axis='both', color='slategray', linestyle='--', linewidth=0.7)
# self.ax.xaxis.set_ticks(np.arange(0, float(self.etr_Xmax.get()), float(self.etr_Xmax.get())/5), fontsize=20, visible=True)
self.str_Ymax.set(DEFAULT_YMAX)
self.str_Xmax.set(DEFAULT_XMAX)
def clear_chart(self):
self.ax.clear() # clear previous plot !!!!
self.ax.set_yticks(range(0, int(self.etr_Ymax.get())+1, 5))
self.ax.xaxis.set_minor_locator(AutoMinorLocator(5))
self.ax.yaxis.set_minor_locator(AutoMinorLocator(5))
self.ax.grid(which="both", axis='both', color='slategray', linestyle='--', linewidth=0.7)
self.ax.set_ylabel('Ia, mA', fontsize=16, loc='center', labelpad=20)
self.ax.set_xlabel('Va, V', fontsize=16, loc='center', labelpad=20)
self.fig.canvas.draw()
self.fig.canvas.flush_events()
def export(self):
pass
def chk_showinterpolation_click(self):
self.change_state()
def chk_cathodeloadline_click(self):
self.change_state()
def chk_input_signal_swing_click(self):
if self.chk_input_signal_swing_var.get() == 0:
self.etr_inputsignal.config({"background": "white"})
else:
self.etr_inputsignal.config({"background": "misty rose"})
self.change_state()
def quit(self):
Tk().quit()
def read_valvespecs(self):
df = pd.read_csv('valves_specs.csv', comment='#', sep=',', engine='python', skipinitialspace=True)
#if DEBUG: print(df)
self.specs = df
def read_valvedata(self):
pd.set_option('display.float_format', '{:20,.20f}'.format)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
#pd.set_option('display.width', None)
#pd.set_option('display.max_colwidth', None)
df = pd.read_csv('valves_data.csv', comment='#', sep='\r\n', names=['entire'], engine='python')
df[['valve', 'curve', 'values']] = df['entire'].str.split(',', n=2, expand=True)
df = df.drop(['entire'], axis=1)
df['values'] = df['values'].apply(np.fromstring, sep=',')
df = (df
.assign(x=df['values'].str[::2], y=df['values'].str[1::2])
.drop(columns='values')
.explode(['x', 'y'])
)
df["x"] = pd.to_numeric(df["x"])
df["y"] = pd.to_numeric(df["y"])
df = df.set_index(['valve', 'curve' ])
res = df.groupby(['valve', 'curve']).apply(lambda x: pd.Series(np.polyfit(x.x, x.y, 2), index=['a', 'b', 'c']))
df = df.reset_index()
self.df = pd.merge(df, res, how="inner", on=['valve', 'curve'])
#if DEBUG: print(df)
def motion_hover(self, event):
if event.inaxes is not None:
self.txt_coordinates.config(state=NORMAL)
x = format(event.xdata, '.2f')
y = format(event.ydata, '.2f')
self.txt_coordinates.delete('1.0', END)
self.txt_coordinates.insert(END, "(%s V, %s mA)" % (x, y))
self.txt_coordinates.config(state=DISABLED)
# function to plot loadline or refresh plot
def change_state(self):
# check values are valid
if len(self.etr_Ra.get()) == 0: return
if len(self.etr_supply.get()) == 0: return
if len(self.etr_Rk.get()) == 0: return
if len(self.etr_Xmax.get()) == 0: return
if len(self.etr_Ymax.get()) == 0: return
if len(self.etr_Xmax.get()) != 0 and self.can_convert_to_float(self.etr_Xmax.get()) == False: return
if len(self.etr_Ra.get()) != 0 and self.can_convert_to_float(self.etr_Ra.get()) == False: return
if len(self.etr_supply.get()) != 0 and self.can_convert_to_float(self.etr_supply.get()) == False: return
if len(self.etr_Rk.get()) != 0 and self.can_convert_to_float(self.etr_Rk.get()) == False: return
if len(self.etr_Ymax.get()) != 0 and self.can_convert_to_float(self.etr_Ymax.get()) == False: return
if len(self.etr_rl.get()) != 0 and self.can_convert_to_float(self.etr_rl.get()) == False: return
if len(self.etr_ck.get()) != 0 and self.can_convert_to_float(self.etr_ck.get()) == False: return
if len(self.etr_inputsignal.get()) != 0 and self.can_convert_to_float(self.etr_inputsignal.get()) == False: return
self.clear_chart()
ymax = int(float(self.str_Ymax.get()))
xmax = int(float(self.str_Xmax.get()))
self.fig.canvas.draw()
self.fig.canvas.flush_events()
# select valve
df = self.df
valve = self.str_valve.get()
de=df.loc[df['valve'] == valve ]
# setup plot
self.ax.set_title(valve, fontsize=24, pad=30, weight='bold')
self.ax.set_yticks(range(0, int(self.etr_Ymax.get())+1, 5))
self.ax.xaxis.set_minor_locator(AutoMinorLocator(5))
self.ax.yaxis.set_minor_locator(AutoMinorLocator(5))
self.ax.grid(which="both", axis='both', color='slategray', linestyle='--', linewidth=0.7)
#self.ax.set_ylabel('Ia, mA', fontsize=16, loc='center')
#self.ax.set_xlabel('Va, V', fontsize=16, loc='center')
"""
#por regresion lineal
num_pts = 100
da=de[['valve','curve','a','b','c']]
res = da.drop_duplicates()
for i in res.index:
lower_limit = 0 #depende de curva
x = np.linspace(lower_limit, xmax, num_pts)
poly_coefs = res['a'][i], res['b'][i], res['c'][i]
y = np.polyval(np.asarray(poly_coefs), x)
#plt.plot(x, y, '-0')
ind = np.argmin(y)
x_min = x[ind]
ax.set_ylim(0, ymax)
ax.set_xlim(0, xmax)
y_positive = y
x_positive = x
if res['curve'][i].strip() != 'Pmax':
y_positive = y[x >= x_min]
x_positive = x[x >= x_min]
ax.plot(x_positive, y_positive, linewidth=2, label=res['curve'][i].strip())
"""
# plot cathode line
df = self.df
valve = self.str_valve.get()
de = df.loc[df['valve'] == valve ]
de = de.drop(de[de['curve'] == ' Pmax'].index)
data = de[['curve','a','b','c'] ].drop_duplicates()
data[['curve', 'a', 'b', 'c']] = data[['curve', 'a', 'b', 'c']].apply(pd.to_numeric)
data['y'] = - data['curve'] / float(self.str_Rk.get()) * 1000
data['x'] = (-data['b']+(data['b']**2-4*data['a']*(data['c']-data['y']))**0.5)/(2*data['a'])
x_positive = data['x']
y_positive = data['y']
# extrapolation
interval = int(float(self.etr_supply.get()) / 0.01)
xnew = np.linspace(x_positive.min(), x_positive.max(), interval)
spl = make_interp_spline(x_positive, y_positive, k=1) # type: BSpline
ynew = spl(xnew)
if self.chk_cathodeloadline_var.get() == 1:
self.ax.plot(xnew, ynew, '-', color='green', linewidth=1)
#self.ax.plot(data['x'], data['y'], '-', color='green', linewidth=1)
# quiscient
b = float(self.str_supply.get()) * 1000 / float(self.str_Ra.get())
a = -b / float(self.str_supply.get())
yloadline = xnew * a + b
idx = np.argwhere(np.diff(np.sign(ynew - yloadline))).flatten()
self.vq = xnew[idx].astype("float")[0]
self.str_Vq.set(format(self.vq, ".2f"))
self.iq = yloadline[idx].astype("float")[0]
self.str_Iq.set(format(self.iq, ".2f"))
# Vgk
self.vgk = - self.iq / 1000 * float(self.str_Rk.get())
self.str_Vgk.set(format(self.vgk, ".2f"))
# get input signal swing values
if self.chk_input_signal_swing_var.get() == 1:
self.input_swing()
# plot grid lines using existent points and interpolation
self.ax.set_ylim(0, ymax)
self.ax.set_xlim(0, xmax)
valve = self.str_valve.get()
da = df.loc[df['valve'] == valve ]
da=da.loc[(da['curve'] != ' Pmax') & (da['x'] <= xmax) & (da['y'] <= ymax), ['valve','curve','x','y'] ]
for name, g in da.groupby('curve'):
x_positive = g['x']
y_positive = g['y']
# try interpolation
try:
interval = int(float(self.etr_supply.get()) / 0.01)
xnew = np.linspace(x_positive.min(), x_positive.max(), interval)
spl = make_interp_spline(x_positive, y_positive, k=2) # type: BSpline
ynew = spl(xnew)
except:
# data points not enought ?
xnew = x_positive
ynew = y_positive
self.ax.plot(xnew, ynew, '-', color='black', linewidth=1)
# annotate grid curves
if name == ' 0': name = "Vg = 0"
self.ax.annotate(name + 'V', xy=(x_positive.max(), y_positive.max()), rotation=0, fontweight='bold')
# plot Pmax using points
da=df.loc[(df['curve'] == ' Pmax') & (df['valve'] == valve), ['valve','curve','x','y'] ]
x_positive = da['x']
y_positive = da['y']
# try interpolation
xnew = np.linspace(x_positive.min(), x_positive.max(), 300)
spl = make_interp_spline(x_positive, y_positive, k=2) # type: BSpline
ynew = spl(xnew)
# add Pmax legend
valve = self.str_valve.get()
pmax=self.specs.loc[self.specs['valve'] == valve ]['Pmax'].iloc[0]
self.ax.plot(xnew, ynew, 'r--', linewidth=1, label=da['curve'].iloc[0].strip() + ' = %sW' % str(pmax) )
# plot loadline
x_values = [float(self.str_supply.get()), 0]
y_values = [0, float(self.str_supply.get()) * 1000 / float(self.str_Ra.get())]
self.ax.plot(x_values, y_values, '-', color='blue', linewidth=2)
# plot input signal suing
if self.swingl != NONE and self.chk_input_signal_swing_var.get() == 1:
self.input_swing()
Vs = float(self.str_supply.get())
Ra = float(self.str_Ra.get())
b = Vs * 1000 / Ra
a = -b / Vs
self.ax.plot([ (self.swingl[1] - b)/a, (self.swingr[1] - b)/a ], [ self.swingl[1], self.swingr[1] ], '-', color='orange', linewidth=2.7)
# plot quiscient at the end
self.ax.plot(self.vq, self.iq, 'ro', markersize=6)
self.ax.legend(loc='upper left')
self.canvas.draw()
# calculate_gain_impedance
self.calculate_gain_impedance()
# calculate and show 2HD
self.calculate_2hd()
if self.sechd != NONE:
self.str_calculations.set(self.str_calculations.get() + ', 2HD: %.2f %%' % self.sechd)
def input_swing(self):
self.swingl = NONE
self.swingr = NONE
inputVpp = self.str_inputsignal.get()
if len(inputVpp) == 0: return
valve = self.str_valve.get()
inputVpp = float(inputVpp)
Vs = float(self.str_supply.get())
Ra = float(self.str_Ra.get())
lft_point_y = self.vgk+inputVpp/2000
rht_point_y = self.vgk-inputVpp/2000
if lft_point_y > 0: return
da = self.df.loc[(self.df['valve'] == valve) & (self.df['curve'] != ' Pmax'), ['valve','curve','x','y'] ]
da[['curve', 'x', 'y']] = da[['curve', 'x', 'y']].apply(pd.to_numeric, errors='coerce', axis=1)
b = Vs * 1000 / Ra
a = -b / Vs
# left point of swing
de = da.loc[(da['curve'] < lft_point_y), ['curve'] ]
lft_prev_curve = de['curve'].max()
de = da.loc[(da['curve'] > lft_point_y), ['curve'] ]
lft_next_curve = de['curve'].min()
de = da.loc[(da['valve'] == valve) & (da['curve'] == lft_prev_curve), ['x'] ]
xmin = de['x'].min()
de = da.loc[(da['curve'] < rht_point_y), ['curve'] ]
rht_prev_curve = de['curve'].max()
de = da.loc[(da['curve'] > rht_point_y), ['curve'] ]
rht_next_curve = de['curve'].min()
de = da.loc[(da['valve'] == valve) & (da['curve'] == rht_next_curve), ['x'] ]
xmax = de['x'].max()
if lft_point_y >= float(self.str_Xmax.get()): return
#if DEBUG: print('swing - min: %, max: %' , xmin, xmax)
interp_A = lft_point_y
interp_B = np.arange(xmin, xmax, 0.01) #step=0.1
ynew = gd((da['curve'], da['x']), da['y'], (interp_A, interp_B), method='cubic')
yloadline = interp_B * a + b
idx = np.argwhere(np.diff(np.sign(yloadline - ynew))).flatten()
# left point of swing
if self.chk_showinterpolation_var.get() == 1:
#if DEBUG:
# print('left swing: Vg=%s Ia=%s Va=%s' % (lft_point_y, ynew, interp_B))
self.ax.plot(interp_B, ynew, '-', color='green', linewidth=1)
self.swingl = [lft_point_y, yloadline[idx][0], (yloadline[idx][0]-b)/a ]
#print(lft_point_y)
#print(yloadline[idx][0])
#print((yloadline[idx][0]-b)/a)
interp_A = rht_point_y
interp_B = np.arange(xmin, xmax, 0.01) #step=0.1
ynew = gd((da['curve'], da['x']), da['y'], (interp_A, interp_B), method='cubic')
idx = np.argwhere(np.diff(np.sign(ynew - yloadline))).flatten()
# right point of swing
if self.chk_showinterpolation_var.get() == 1:
#if DEBUG:
# print('right swing: Vg=%s Ia=%s Va=%s' % (rht_point_y, ynew, interp_B))
self.ax.plot(interp_B, ynew, '-', color='green', linewidth=1)
self.swingr = [rht_point_y, yloadline[idx][-1], (yloadline[idx][-1]-b)/a ]
#print(rht_point_y)
#print(yloadline[idx][-1])
#print((yloadline[idx][-1]-b)/a)
def can_convert_to_float(self, string):
try:
result = float(string)
return True
except ValueError:
return False
def calculate_2hd(self):
self.sechd = NONE
if len(self.str_Vq.get()) == 0: return
if self.swingl != NONE or self.swingr != NONE:
A = self.swingl[2]
B = float(self.str_Vq.get())
C = self.swingr[2]
AB = B - A
BC = C - B
if DEBUG:
print('\n\n\nAB: %f' % AB)
print('BC: %f' % BC)
print('A: %f' % A)
print('B: %f' % B)
print('C: %f' % C)
self.sechd = abs((AB - BC) / (2 * (AB+BC)) * 100)
#print('2: %f' % self.sechd)
#self.sechd = (( B - ((C+A)/2) ) / (C - A) ) * 100
#print('2: %f' % self.sechd)
# calculate gain, power diss, output impedance, etc.
def calculate_gain_impedance(self):
valve = self.str_valve.get()
mu = self.specs.loc[self.specs['valve'] == valve ]['mu'].iloc[0]
ra = self.specs.loc[self.specs['valve'] == valve ]['ra'].iloc[0]
if len(self.etr_Ra.get()) == 0: return
Ra = float(self.etr_Ra.get())
if len(self.etr_rl.get()) == 0: return
if len(self.etr_rl.get()) != 0 and self.can_convert_to_float(self.etr_rl.get()) == False: return
Rl = float(self.etr_rl.get())
#sin cap
if len(self.etr_ck.get()) == 0 or self.can_convert_to_float(self.etr_ck.get()) == False or self.etr_ck.get() == '0':
if len(self.etr_Rk.get()) == 0: return
if len(self.etr_Rk.get()) != 0 and self.can_convert_to_float(self.etr_Rk.get()) == False: return
Rk = float(self.etr_Rk.get())
g=(mu*(1/((1/Ra)+(1/Rl))))/((1/((1/Ra)+(1/Rl)))+ra+(Rk*(mu+1)))
gdb=(math.log10(g))*20
aoi =(Ra*(ra+(Rk*(mu+1))))/(Ra+ra+(Rk*(mu+1)))
coi = 1/((1/((Ra+ra)/(mu+1)))+(1/Rk))
self.str_calculations.set('A: %.1f %.1f dB, P: %.2f W, anode output impedance: %d ohms, cathode output impedance: %d ohms' % (g, gdb, self.vq * self.iq / 1000, aoi, coi))
Cga = self.specs.loc[self.specs['valve'] == valve ]['Cga'].iloc[0]
CgAEA = self.specs.loc[self.specs['valve'] == valve ]['CgAEA'].iloc[0]
Cf = 0
if len(self.str_cf.get()) != 0 and self.can_convert_to_float(self.str_cf.get()) == TRUE:
Cf = float(self.str_cf.get())
total_input_capacitance = CgAEA +((Cf+Cga)*g)
self.str_calculations.set(self.str_calculations.get() + ', Total_Input_Capacitance: %d pf' % total_input_capacitance)
elif len(self.etr_ck.get()) != 0 and self.can_convert_to_float(self.etr_ck.get()) != False:
gcc=(mu*(1/((1/Ra)+(1/Rl))))/((1/((1/Ra)+(1/Rl)))+ra)
gdb=(math.log10(gcc))*20
aoi = (Ra*ra)/(Ra+ra)
self.str_calculations.set('A: %.1f %.1f dB, P: %.2f W, anode output impedance: %d ohms' % (gcc, gdb, self.vq * self.iq / 1000, aoi))
Cga = self.specs.loc[self.specs['valve'] == valve ]['Cga'].iloc[0]
CgAEA = self.specs.loc[self.specs['valve'] == valve ]['CgAEA'].iloc[0]
Cf = 0
if len(self.str_cf.get()) != 0 and self.can_convert_to_float(self.str_cf.get()) == TRUE:
Cf = float(self.str_cf.get())
total_input_capacitance = CgAEA +((Cf+Cga)*gcc)
self.str_calculations.set(self.str_calculations.get() + ', Total_Input_Capacitance: %d pf' % total_input_capacitance)
"""
#sin cap
g=(mu*(1/((1/Ra)+(1/Rl))))/((1/((1/Ra)+(1/Rl)))+ra+(Rk*(mu+1)))
gdb=(LOG10(g))*20
anode output impedance =(Ra*(ra+(Rk*(mu+1))))/(Ra+ra+(Rk*(mu+1)))
cathode output impedance = 1/((1/((Ra+ra)/(mu+1)))+(1/Rk))
total input capacitance = Cgaea +((Cf+Cga)*g)
#####################################
#con cap
gcc=(mu*(1/((1/Ra)+(1/Rl))))/((1/((1/Ra)+(1/Rl)))+ra)
gdb=(LOG10(gcc))*20
anode output impedance = (Ra*ra)/(Ra+ra)
total input capacitance = Cgaea +((Cf+Cga)*gcc)
#####################################
HF roll-off due to grid stopping (-3dB) (Hz) =1/(2*PI()*(Total Input Capacitance/1000000000000)*Rg)
LF output roll-off due to Co and Rl (-3dB) (Hz) =1/(2*PI()*(Anode Output Impedance con CAP+Rl)*(Co/1000000000))
Half boost freq. Hz=(1/(2*PI()*Rk*(Ck/1000000)))*(1+((Rk*mu+1)/((2*(Ra+ra))+(0.5*(Rk*mu+1)))))^0.5
"""
window = Tk()
window.title('andmarti Load Line Plotter')
#window.state('zoomed')
start = mclass(window)
window.mainloop()