forked from Peilun-Li/SG-GAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupp_network.py
83 lines (81 loc) · 4.68 KB
/
supp_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Feb 21 13:05:07 2019
@author: aramazzi
"""
import time
import tensorflow as tf
import tensorlayer as tl
from tensorlayer.layers import *
def Vgg19_simple_api(rgb, reuse):
"""
Build the VGG 19 Model
Parameters
-----------
rgb : rgb image placeholder [batch, height, width, 3] values scaled [0, 1]
"""
VGG_MEAN = [103.939, 116.779, 123.68]
with tf.variable_scope("VGG19", reuse=reuse) as vs:
start_time = time.time()
print("build model started")
rgb_scaled = rgb * 255.0
# Convert RGB to BGR
if tf.__version__ <= '0.11':
red, green, blue = tf.split(3, 3, rgb_scaled)
else: # TF 1.0
# print(rgb_scaled)
red, green, blue = tf.split(rgb_scaled, 3, 3)
assert red.get_shape().as_list()[1:] == [224, 224, 1]
assert green.get_shape().as_list()[1:] == [224, 224, 1]
assert blue.get_shape().as_list()[1:] == [224, 224, 1]
if tf.__version__ <= '0.11':
bgr = tf.concat(3, [
blue - VGG_MEAN[0],
green - VGG_MEAN[1],
red - VGG_MEAN[2],
])
else:
bgr = tf.concat(
[
blue - VGG_MEAN[0],
green - VGG_MEAN[1],
red - VGG_MEAN[2],
], axis=3)
assert bgr.get_shape().as_list()[1:] == [224, 224, 3]
""" input layer """
net_in = InputLayer(bgr, name='input')
""" conv1 """
network = Conv2d(net_in, n_filter=64, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv1_1')
network = Conv2d(network, n_filter=64, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv1_2')
network = MaxPool2d(network, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool1')
""" conv2 """
network = Conv2d(network, n_filter=128, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv2_1')
network = Conv2d(network, n_filter=128, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv2_2')
network = MaxPool2d(network, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool2')
""" conv3 """
network = Conv2d(network, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_1')
network = Conv2d(network, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_2')
network = Conv2d(network, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_3')
network = Conv2d(network, n_filter=256, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv3_4')
network = MaxPool2d(network, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool3')
""" conv4 """
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_1')
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_2')
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_3')
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv4_4')
network = MaxPool2d(network, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool4') # (batch_size, 14, 14, 512)
conv = network
""" conv5 """
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_1')
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_2')
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_3')
network = Conv2d(network, n_filter=512, filter_size=(3, 3), strides=(1, 1), act=tf.nn.relu, padding='SAME', name='conv5_4')
network = MaxPool2d(network, filter_size=(2, 2), strides=(2, 2), padding='SAME', name='pool5') # (batch_size, 7, 7, 512)
""" fc 6~8 """
network = FlattenLayer(network, name='flatten')
network = DenseLayer(network, n_units=4096, act=tf.nn.relu, name='fc6')
network = DenseLayer(network, n_units=4096, act=tf.nn.relu, name='fc7')
network = DenseLayer(network, n_units=1000, act=tf.identity, name='fc8')
print("build model finished: %fs" % (time.time() - start_time))
return network, conv