-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathslide_captcha.py
170 lines (149 loc) · 6.35 KB
/
slide_captcha.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# -*- coding: utf-8 -*-
"""
滑动验证码相关
"""
import cv2
import numpy as np
# yolov5 project
try:
import torch
from yolov5.models import experimental
from yolov5.utils import torch_utils
from yolov5.utils import datasets
from yolov5.utils import general
from yolov5.utils import plots
except:
pass
def wait_for_destroy_windows():
cv2.waitKey(0)
cv2.destroyAllWindows()
def show_image(name, image):
"""
展示图片
:param name: window name
:param image: image mat
"""
cv2.namedWindow(name, cv2.WINDOW_NORMAL | cv2.WINDOW_GUI_EXPANDED)
cv2.imshow(name, image)
def _process_image(image, blur=False):
"""
预处理; 部分网站的图片先模糊再求边缘的匹配效果 不如直接求边缘的匹配效果好
<pre>
模糊
求边界
<pre>
:param image: image mat
:param blur 是否模糊
:return: handle image mat
"""
if blur:
image = cv2.GaussianBlur(image, (5, 5), 0)
return cv2.Canny(image, 50, 150)
def _read_image_from_local_file(image_path, image_scale=cv2.IMREAD_GRAYSCALE):
with open(image_path, 'rb') as fd:
content = fd.read()
return cv2.imdecode(np.frombuffer(content, dtype=np.uint8), image_scale)
def _read_image_from_bytes(image_bytes, image_scale=cv2.IMREAD_GRAYSCALE):
if not isinstance(image_bytes, bytes):
raise RuntimeError('image bytes must be bytes type')
return cv2.imdecode(image_bytes, image_scale)
def detect_displacement(image_slider, image_background, blur=False, display_image=True):
"""
探测缺口偏移量
:param image_slider: 缺口图 numpy.ndarray or image file path
:param image_background: 底图 numpy.ndarray or image file path
:param blur: 预处理时是否模糊图片
:param display_image: 展示图片
:return: top_left_x, top_left_y, width, height
"""
if isinstance(image_slider, str):
image_slider = _read_image_from_local_file(image_slider)
if isinstance(image_background, str):
image_background = _read_image_from_local_file(image_background)
processed_image_slider = _process_image(image_slider, blur=blur)
processed_image_background = _process_image(image_background, blur=blur)
# match
res = cv2.matchTemplate(processed_image_slider, processed_image_background, cv2.TM_CCOEFF_NORMED)
_, _, _, max_location = cv2.minMaxLoc(res)
# pos
x, y = max_location
# height width
h, w = image_slider.shape
# draw match
cv2.rectangle(image_background, (x, y), (x + w, y + h), (255, 255, 255), 2)
if display_image:
show_image("processed_image_slider", processed_image_slider)
show_image("processed_image_background", processed_image_background)
show_image("match", image_background)
wait_for_destroy_windows()
return x, y, w, h
"""
基于YOLO的方法定位缺口需要标注数据且进行训练 时间成本相对较高
一般情况下使用cv2.matchTemplate基本就能框定出缺口的位置
使用 [yolo v5](https://github.com/ultralytics/yolov5) 进行训练
基于yolo v5中的detect.py改造自己的检查函数即可
"""
class DisplacementFinderByYolo(object):
def __init__(self):
self.model = None
self.device = None
def load_models(self, weights_file_path, **kwargs):
"""
加载模型
:param weights_file_path: weights文件路径
:param kwargs: 其它控制参数
"""
# 选择设备
device = torch_utils.select_device()
# 加载模型
model = experimental.attempt_load([weights_file_path,], map_location=device)
model.float().eval()
self.model = model
self.device = device
def detect_displacement(self, img_path, img_size=None):
"""
基于yolo v5中detect.py的run函数改造此函数即可
方法一: 直接调用detect.run()方法并设置结果写出到txt文件 通过读取txt文件解析结果(此方法每次调用都需要重新加载模型 适合一次性大批量处理)
方法二: 复用detect.run中代码,将模型加载放到 self._load_models中 将探测代码放到 detect_displacement中
:param img_path: 图片路径
:param img_size: 图片(高 宽) 这里需要和训练模型时传递的图片size参数一致
:return: 类别,置信度,边框(x, y, w, h) x,y是左上角坐标
"""
stride = max(int(self.model.stride.max()), 32)
imgsz = general.check_img_size(img_size, s=stride)
dataset = datasets.LoadImages(img_path, img_size=imgsz, stride=stride, auto=True)
for path, im, im0s, vid_cap, s in dataset:
im = torch.from_numpy(im).to(self.device)
# uint8 to fp16/32
im = im.float()
# 0 - 255 to 0.0 - 1.0
im /= 255
if len(im.shape) == 3:
# expand for batch 4-dim
im = im[None]
pred = self.model(im, augment=False, visualize=False)
# 非极大值抑制
pred = general.non_max_suppression(pred[0], 0.25, 0.4, None, False, max_det=1000)
# Process predictions
# per image
for _, det in enumerate(pred):
if len(det):
# process result
# 转换回原始图片尺度
det[:, :4] = general.scale_coords(im.shape[2:], det[:, :4], im0s.shape).round()
for *xyxy, conf, cls in reversed(det):
box = torch.tensor(xyxy).view(1, 4).view(-1).tolist()
box[2] = (box[2] - box[0])
box[3] = (box[3] - box[1])
confidence_value = conf.item()
class_index = cls.item()
return int(class_index), confidence_value, box
#print('conf %s, class %s, box: %s' % (confidence_value, class_index, box))
"""
ann = plots.Annotator(im0s.copy())
ann.box_label(xyxy, 'dis')
im0 = ann.result()
cv2.imshow('dis', im0)
cv2.waitKey(5000)
"""
return None, None, None