-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutilities.jl
46 lines (39 loc) · 1.42 KB
/
utilities.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
using LinearAlgebra
using SparseArrays
using IterativeSolvers: cg!
"Generates a laplacian with Dirichlet BCs"
function generate_lapl(n)
L = spdiagm(-1 => ones(n-1), 0 => -2*ones(n), 1 => ones(n-1))
return L
end
"Idk, this seemed easier (I've now somewhat learned the new ways)"
function linspace(s, e, n)
return collect(range(s, e, length=n))
end
"Sets a rectangle with `top_left` and `bottom_right` coordinates in an array to value `value`"
function filter_square!(a, top_left, bottom_right, to_linear, value)
for J in CartesianIndices(bottom_right - top_left)
a[to_linear[top_left + J]] = value
end
end
"""
Minimizes ∑ᵢ ‖diag(v_i)*θ - h_i‖², s.t. 0 ≤ θ ≤ u over θ.
Corresponds to the multi-mode version of the θ update in section 8.1 in the appendix.
"""
function min_sq_diag(v, h, u, n_freq; tol=1e-14)
w_comp = sum(v[i] .* h[i] for i=1:n_freq)
inv_comp = sum(v[i].^2 for i=1:n_freq)
return clamp.(w_comp ./ inv_comp, 0, u)
end
"""
Minimizes ‖W(z - z_hat)‖² + ρ‖(A + diag(θ))z - b + ν‖² over z.
"""
function solve_max_eq!(z, A, θ, ν, ρ, W, z_hat, b, F)
A_θ = A + spdiagm(0 => θ)
return cholesky!(F, Symmetric(spdiagm(0 => W.^2) + ρ * A_θ' * A_θ)) \ (W .* z_hat + ρ * A_θ' * (b - ν))
end
# Formulates ‖x‖² ≤ y as an SOC
function quad_cons(m, x, y)
# @constraint(m, sum(x.^2) ≤ y )
@constraint(m, [y+1; y-1; 2*x] in SecondOrderCone())
end