-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
85 lines (64 loc) · 3.72 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
'''
Neural Style Transfer using TensorFlow's Pretrained Style Transfer Model
https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2
'''
import gradio as gr
import tensorflow as tf
import tensorflow_hub as hub
from PIL import Image
import numpy as np
import cv2
import os
model = hub.load("https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2")
# source: https://stackoverflow.com/questions/4993082/how-can-i-sharpen-an-image-in-opencv
def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=1.0, threshold=0):
"""Return a sharpened version of the image, using an unsharp mask."""
blurred = cv2.GaussianBlur(image, kernel_size, sigma)
sharpened = float(amount + 1) * image - float(amount) * blurred
sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
sharpened = sharpened.round().astype(np.uint8)
if threshold > 0:
low_contrast_mask = np.absolute(image - blurred) < threshold
np.copyto(sharpened, image, where=low_contrast_mask)
return sharpened
def style_transfer(content_img,style_image, style_weight = 1, content_weight = 1, style_blur=False):
content_img = unsharp_mask(content_img,amount=1)
content_img = tf.image.resize(tf.convert_to_tensor(content_img,tf.float32)[tf.newaxis,...] / 255.,(512,512),preserve_aspect_ratio=True)
style_img = tf.convert_to_tensor(style_image,tf.float32)[tf.newaxis,...] / 255.
if style_blur:
style_img= tf.nn.avg_pool(style_img, [3,3], [1,1], "VALID")
style_img = tf.image.adjust_contrast(style_img, style_weight)
content_img = tf.image.adjust_contrast(content_img,content_weight)
content_img = tf.image.adjust_saturation(content_img, 2)
content_img = tf.image.adjust_contrast(content_img,1.5)
stylized_img = model(content_img, style_img)[0]
return Image.fromarray(np.uint8(stylized_img[0]*255))
title = "PixelFusion🧬"
description = "Gradio Demo for Artistic Neural Style Transfer. To use it, simply upload a content image and a style image. [Learn More](https://www.tensorflow.org/tutorials/generative/style_transfer)."
article = "</br><p style='text-align: center'><a href='https://github.com/0xsynapse' target='_blank'>GitHub</a></p> "
content_input = gr.inputs.Image(label="Upload an image to which you want the style to be applied.",)
style_input = gr.inputs.Image( label="Upload Style Image ",shape= (256,256), )
style_slider = gr.inputs.Slider(0,2,label="Adjust Style Density" ,default=1,)
content_slider = gr.inputs.Slider(1,5,label="Content Sharpness" ,default=1,)
# style_checkbox = gr.Checkbox(value=False,label="Tune Style(experimental)")
examples = [
["Content/content_1.jpg","Styles/style_1.jpg",1.20,1.70,"style_checkbox"],
["Content/content_2.jpg","Styles/style_2.jpg",0.91,2.54,"style_checkbox"],
["Content/content_3.png","Styles/style_3.jpg",1.02,2.47,"style_checkbox"]
]
interface = gr.Interface(fn=style_transfer,
inputs=[content_input,
style_input,
style_slider ,
content_slider,
# style_checkbox
],
outputs=gr.outputs.Image(type="pil"),
title=title,
description=description,
article=article,
examples=examples,
enable_queue=True
)
interface.launch()