-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMetanalysis.R
157 lines (128 loc) · 5.75 KB
/
Metanalysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#-----------------------------------------------------------------------------------------------#
# Name - metanalysis.r #
# Desc - Untargeted metabolomics profiling. #
# Author - Difei Wang ([email protected]); Lin An ([email protected]) #
#-----------------------------------------------------------------------------------------------#
#-----------------------------------------------------------------------------------------------#
# Name&Path Setting #
#-----------------------------------------------------------------------------------------------#
## Setting Directories
myDir = "C:/Users/la512/Desktop/xcmstest/DMDneg"
setwd(myDir)
## CONTROL GROUP
myControl = "NORMAL"
## CASE GROUP
myCase = "DMD"
## Folder Name for Image Storage
boxname= "DMDvsNORMALnew"
## Technical Replicate Information
techrep="techrep.txt"
#-----------------------------------------------------------------------------------------------#
# Parameter Setting #
#-----------------------------------------------------------------------------------------------#
## Experiment Polarity
polar = "negative"
## Feature Detection Filter
ppmF <- 10
prefpeak <- 3
prefint <- 100
## Statistics Threshold
pthr <- 0.01
## Annotation Parameter
ppmA <- 5
#-----------------------------------------------------------------------------------------------#
# Raw Data Processing #
#-----------------------------------------------------------------------------------------------#
## Calling Libraries
require(xcms)
require(CAMERA)
## Load Raw Data
files <- list.files(myDir, pattern="*.CDF", recursive=TRUE, full.names=TRUE)
paste(files)
NumofSample <- length(files)
pd <- xcms:::phenoDataFromPaths(files)
## Feature detection (CentWave method)
xset <- xcmsSet(files,method="centWave", prefilter=c(prefpeak,prefint),
ppm=ppmF, peakwidth=c(5,10), snthr=8, mzdiff=0.01, noise=0)
xset <- group(xset)
## Retention time correction (obiwarp method)
xsetR <- retcor(xset, method="obiwarp",profStep=1)
## Alignment (density method)
xsetA <- group(xsetR,bw=6, mzwid=0.025, minfrac=0.5, minsamp=1)
## FillPeaks
xsetF <- fillPeaks(xsetA)
## Diffreport
Diffre <- diffreport(xsetF, sortpval=FALSE, myControl, myCase, filebase=boxname, eicmax = 10, eicwidth = 200
, value = "into", classeic = c(myControl,myCase), test="t")
write.csv(Diffre,"Diffreport1.csv",row.names=FALSE)
## Annotated Diffreport
Annodiffre <- annotateDiffreport(xsetF, sample=c(1:NumofSample), polarity=polar,
sigma=6, perfwhm=0.6, maxcharge=3, maxiso=4, ppm=ppmA, mzabs=0.015, pval_th = pthr, intval="into", quick=TRUE)
write.csv(Annodiffre,"Annotationdiff.csv",row.names=FALSE)
#-----------------------------------------------------------------------------------------------#
# Technical Replicates Correction #
#-----------------------------------------------------------------------------------------------#
## Remove Technical Replicates
avgduplicates <- function(reporttab, annot.file, NumofSample, data.start.column = 14) {
browser()
data.end.column = data.start.column + NumofSample - 1
ends = data.end.column + 1
endc = data.end.column + 3
dataMatrix=as.matrix(reporttab[, data.start.column:data.end.column])
dataMatrix_names=as.matrix(reporttab[, 1])
dataMatrix_mzrt=as.matrix(reporttab[, 5:13])
dataMatrix_iap=as.matrix(reporttab[, ends:endc])
storage.mode(dataMatrix) = 'double'
col.names = colnames(dataMatrix)
annot = as.matrix(read.delim(annot.file, header = TRUE))
idx = match(col.names, annot[,1])
col.names[!is.na(idx)] = annot[idx[!is.na(idx)], 2]
colnames(dataMatrix)=col.names
unique.col.names = unique(col.names)
avg.dataMatrix = matrix(0, nrow(dataMatrix), length(unique.col.names))
colnames(avg.dataMatrix) = unique.col.names
for(i in 1:length(unique.col.names)) {
cur.subMatrix = dataMatrix[, col.names == unique.col.names[i]]
avg.dataMatrix[,i] = rowMeans(cur.subMatrix, na.rm = TRUE)
}
avgcol.names = colnames(avg.dataMatrix)
avgidx = match(avgcol.names, annot[,2])
c1 = annot[avgidx, 2][annot[avgidx,3] == '0']
c2 = annot[avgidx, 2][annot[avgidx,3] == '1']
## Check against missing Values
if (any(is.na(avg.dataMatrix[,c(c1,c2)]))) {
stop("NA values in xcmsSet. Use fillPeaks()")
}
mean1 <- rowMeans(avg.dataMatrix[,c1,drop=FALSE], na.rm = TRUE)
mean2 <- rowMeans(avg.dataMatrix[,c2,drop=FALSE], na.rm = TRUE)
## Calculate fold change.
## For foldchange <1 set fold to 1/fold
## See tstat to check which was higher
fold <- mean2 / mean1
fold[!is.na(fold) & fold < 1] <- 1/fold[!is.na(fold) & fold < 1]
## Calculate tstat
testval <- avg.dataMatrix[,c(c1,c2)]
testclab <- c(rep(0,length(c1)),rep(1,length(c2)))
if (min(length(c1), length(c2)) >= 2) {
tstat <- mt.teststat(testval, testclab)
pvalue <- pval(testval, testclab, tstat)
} else {
message("Too few samples per class, skipping t-test.")
tstat <- pvalue <- rep(NA,nrow(testval))
}
stat <- data.frame(fold = fold, tstat = tstat, pvalue = pvalue)
save(avg.dataMatrix, file = 'avg.dataMatrix.Rdata')
report <- do.call(cbind,list(dataMatrix_names, stat, dataMatrix_mzrt, avg.dataMatrix, dataMatrix_iap))
write.csv(report, file = 'avg.report.csv', row.names=FALSE)
}
## P-Value Calculation
pval <- function(X, classlabel, teststat) {
n1 <- rowSums(!is.na(X[,classlabel == 0]))
n2 <- rowSums(!is.na(X[,classlabel == 1]))
A <- apply(X[,classlabel == 0], 1, sd, na.rm=TRUE)^2/n1 ## sd(t(X[,classlabel == 0]), na.rm = TRUE)^2/n1
B <- apply(X[,classlabel == 1], 1, sd, na.rm=TRUE)^2/n2 ## sd(t(X[,classlabel == 1]), na.rm = TRUE)^2/n2
df <- (A+B)^2/(A^2/(n1-1)+B^2/(n2-1))
pvalue <- 2 * (1 - pt(abs(teststat), df))
invisible(pvalue)
}
Postrep <- avgduplicates(Annodiffre, techrep, NumofSample)