-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathhw07.v
99 lines (67 loc) · 2.21 KB
/
hw07.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Section CaseTacticForTypeFamilies.
(** * Exercise *)
(* CONSTRAINTS: do _not_ use `rewrite`, `->` or any lemmas to solve this exercise.
Use _only_ the `case` tactic *)
Lemma sym T (x y : T) :
x = y -> y = x.
Proof.
by case: y/.
Qed.
(* Hint: use the `case: ... / ...` variant *)
(** * Exercise *)
(* Figure out what `alt_spec` means and prove the lemma *)
Lemma altP P b :
reflect P b -> alt_spec P b b.
Proof.
by case: b/; constructor.
Qed.
(* Hint: use the `case: ... / ...` variant *)
End CaseTacticForTypeFamilies.
Section MultiRules.
(** * Exercise: A spec for boolean equality *)
Variant eq_xor_neq (T : eqType) (x y : T) : bool -> bool -> Type :=
| EqNotNeq of x = y : eq_xor_neq x y true true
| NeqNotEq of x != y : eq_xor_neq x y false false.
Lemma eqVneq (T : eqType) (x y : T) :
eq_xor_neq x y (y == x) (x == y).
Proof.
Admitted.
(** Hint: Use `case: (altP eqP)` to get the right assumptions.
Also, try using `case: eqP` instead to see the difference. *)
(** * Exercise: use `eqVneq` to prove this lemma *)
Lemma eqVneq_example (T : eqType) (w x y z : T) :
w == x -> z == y ->
(x == w) /\ (y == z) /\ (z == y).
Proof.
Admitted.
(** * Exercise *)
Lemma andX (a b : bool) : reflect (a * b) (a && b).
Proof.
Admitted.
Arguments andX {a b}.
(** * Exercise: prove the following lemma using `andX` lemma. *)
(* CONSTRAINTS: you may only use `move` and `rewrite` to solve this;
no `case` or `[]` or any other form of case-splitting is allowed!
and no lemmas other than `andX` *)
Lemma andX_example a b :
a && b -> b && a && a && b.
Proof. by move=> ab; rewrite !(andX ab). Qed.
(** Hint: `reflect`-lemmas may act like functions (implications) *)
End MultiRules.
Lemma ltn_ind P :
(forall n, (forall m, m < n -> P m) -> P n) ->
forall n, P n.
Proof.
move=> accP n.
apply: (accP)=> M leMn.
(* move: M leMn; elim: n => // n IHn M leMn. *)
elim: n => // n IHn in M leMn *.
by apply/accP=> p /leq_trans/(_ leMn)/IHn.
Qed.
move=> accP M; have [n leMn] := ubnP M; elim: n => // n IHn in M leMn *.
by apply/accP=> p /leq_trans/(_ leMn)/IHn.
Qed.