forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgptModelConfig.h
293 lines (243 loc) · 7.49 KB
/
gptModelConfig.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include "tensorrt_llm/common/quantization.h"
#include "tensorrt_llm/runtime/common.h"
#include <NvInferRuntime.h>
namespace tensorrt_llm::runtime
{
class GptModelConfig
{
public:
enum class ModelVariant : std::int32_t
{
kGpt = 0,
kGlm = 1, // https://github.com/THUDM/GLM and https://github.com/THUDM/ChatGLM-6B
};
constexpr explicit GptModelConfig(
SizeType vocabSize, SizeType nbLayers, SizeType nbHeads, SizeType hiddenSize, nvinfer1::DataType dtype)
: mVocabSize(vocabSize)
, mNbLayers(nbLayers)
, mNbHeads(nbHeads)
, mNbKvHeads(nbHeads)
, mHiddenSize(hiddenSize)
, mDataType(dtype)
, mUseGptAttentionPlugin(false)
, mInputPacked{false}
, mPagedKvCache{false}
, mTokensPerBlock{64}
, mQuantMode{common::QuantMode::none()}
, mMaxBatchSize(0)
, mMaxInputLen(0)
, mMaxOutputLen(0)
, mMaxNumTokens(std::nullopt)
, mComputeContextLogits(false)
, mComputeGenerationLogits(false)
, mModelVariant(ModelVariant::kGpt)
, mUseCustomAllReduce(false)
, mMaxPromptEmbeddingTableSize(0)
, mMaxDraftLen(0)
{
}
[[nodiscard]] SizeType constexpr getVocabSize() const noexcept
{
return mVocabSize;
}
[[nodiscard]] SizeType constexpr getVocabSizePadded(SizeType worldSize) const noexcept
{
return (mVocabSize + worldSize - 1) / worldSize * worldSize;
}
[[nodiscard]] SizeType constexpr getNbLayers(SizeType pipelineParallelism = 1) const
{
TLLM_CHECK(mNbLayers % pipelineParallelism == 0);
return mNbLayers / pipelineParallelism;
}
[[nodiscard]] SizeType constexpr getNbHeads() const noexcept
{
return mNbHeads;
}
[[nodiscard]] SizeType constexpr getNbKvHeads() const noexcept
{
return mNbKvHeads;
}
void constexpr setNbKvHeads(SizeType nbKvHeads) noexcept
{
mNbKvHeads = nbKvHeads;
}
[[nodiscard]] SizeType constexpr getHiddenSize() const noexcept
{
return mHiddenSize;
}
[[nodiscard]] SizeType constexpr getSizePerHead() const noexcept
{
return mHiddenSize / mNbHeads;
}
[[nodiscard]] nvinfer1::DataType constexpr getDataType() const noexcept
{
return mDataType;
}
[[nodiscard]] bool constexpr useGptAttentionPlugin() const noexcept
{
return mUseGptAttentionPlugin;
}
void constexpr useGptAttentionPlugin(bool useGptAttentionPlugin) noexcept
{
mUseGptAttentionPlugin = useGptAttentionPlugin;
}
[[nodiscard]] bool constexpr usePackedInput() const noexcept
{
return mInputPacked;
}
void constexpr usePackedInput(bool inputPacked) noexcept
{
mInputPacked = inputPacked;
}
[[nodiscard]] bool constexpr usePagedKvCache() const noexcept
{
return mPagedKvCache;
}
void constexpr usePagedKvCache(bool pagedKvCache) noexcept
{
mPagedKvCache = pagedKvCache;
}
[[nodiscard]] SizeType constexpr getTokensPerBlock() const noexcept
{
return mTokensPerBlock;
}
void constexpr setTokensPerBlock(SizeType TokensPerBlock) noexcept
{
mTokensPerBlock = TokensPerBlock;
}
[[nodiscard]] common::QuantMode constexpr getQuantMode() const noexcept
{
return mQuantMode;
}
void constexpr setQuantMode(common::QuantMode QuantMode) noexcept
{
mQuantMode = QuantMode;
}
[[nodiscard]] bool constexpr supportsInflightBatching() const noexcept
{
return mUseGptAttentionPlugin && mInputPacked && mPagedKvCache;
}
[[nodiscard]] SizeType constexpr getMaxBatchSize() const noexcept
{
return mMaxBatchSize;
}
void constexpr setMaxBatchSize(SizeType maxBatchSize) noexcept
{
mMaxBatchSize = maxBatchSize;
}
[[nodiscard]] SizeType constexpr getMaxInputLen() const noexcept
{
return mMaxInputLen;
}
void constexpr setMaxInputLen(SizeType maxInputLen) noexcept
{
mMaxInputLen = maxInputLen;
}
[[nodiscard]] SizeType constexpr getMaxOutputLen() const noexcept
{
return mMaxOutputLen;
}
void constexpr setMaxOutputLen(SizeType maxOutputLen) noexcept
{
mMaxOutputLen = maxOutputLen;
}
[[nodiscard]] std::optional<SizeType> constexpr getMaxNumTokens() const noexcept
{
return mMaxNumTokens;
}
void constexpr setMaxNumTokens(std::optional<SizeType> maxNumTokens) noexcept
{
mMaxNumTokens = maxNumTokens;
}
[[nodiscard]] bool constexpr usePromptTuning() const noexcept
{
return mMaxPromptEmbeddingTableSize > 0;
}
[[nodiscard]] SizeType constexpr getMaxPromptEmbeddingTableSize() const noexcept
{
return mMaxPromptEmbeddingTableSize;
}
void constexpr setMaxPromptEmbeddingTableSize(SizeType maxPromptEmbeddingTableSize) noexcept
{
mMaxPromptEmbeddingTableSize = maxPromptEmbeddingTableSize;
}
[[nodiscard]] bool constexpr computeContextLogits() const noexcept
{
return mComputeContextLogits;
}
void constexpr computeContextLogits(bool computeContextLogits) noexcept
{
mComputeContextLogits = computeContextLogits;
}
[[nodiscard]] bool constexpr computeGenerationLogits() const noexcept
{
return mComputeGenerationLogits;
}
void constexpr computeGenerationLogits(bool computeGenerationLogits) noexcept
{
mComputeGenerationLogits = computeGenerationLogits;
}
[[nodiscard]] ModelVariant getModelVariant() const
{
return mModelVariant;
}
void setModelVariant(ModelVariant modelVariant)
{
mModelVariant = modelVariant;
}
[[nodiscard]] bool constexpr useCustomAllReduce() const noexcept
{
return mUseCustomAllReduce;
}
void constexpr useCustomAllReduce(bool customAllReduce) noexcept
{
mUseCustomAllReduce = customAllReduce;
}
void constexpr setMaxDraftLen(SizeType maxDraftLen) noexcept
{
mMaxDraftLen = maxDraftLen;
}
[[nodiscard]] SizeType constexpr getMaxTokensPerStep() const noexcept
{
return mMaxDraftLen + 1;
}
private:
SizeType mVocabSize;
SizeType mNbLayers;
SizeType mNbHeads;
SizeType mNbKvHeads;
SizeType mHiddenSize;
nvinfer1::DataType mDataType;
bool mUseGptAttentionPlugin;
bool mInputPacked;
bool mPagedKvCache;
SizeType mTokensPerBlock;
common::QuantMode mQuantMode;
SizeType mMaxBatchSize;
SizeType mMaxInputLen;
SizeType mMaxOutputLen;
std::optional<SizeType> mMaxNumTokens;
bool mComputeContextLogits;
bool mComputeGenerationLogits;
ModelVariant mModelVariant;
bool mUseCustomAllReduce;
SizeType mMaxPromptEmbeddingTableSize;
SizeType mMaxDraftLen;
};
} // namespace tensorrt_llm::runtime