diff --git a/doc/content/en/docs/1.11.1/Getting started (Java)/_index.md b/doc/content/en/docs/1.11.1/Getting started (Java)/_index.md
index f3944cf020e..7731dae06f9 100644
--- a/doc/content/en/docs/1.11.1/Getting started (Java)/_index.md
+++ b/doc/content/en/docs/1.11.1/Getting started (Java)/_index.md
@@ -31,7 +31,7 @@ This is a short guide for getting started with Apache Avro™ using Java. This g
## Download
-Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the [Apache Avro™ Download]({{< relref "/project/download" >}}) page. This guide uses Avro {{< avro_version >}}, the latest version at the time of writing. For the examples in this guide, download avro-{{< avro_version >}}.jar and avro-tools-{{< avro_version >}}.jar.
+Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the [Apache Avro™ Download]({{< relref "/project/download" >}}) page. This guide uses Avro 1.11.1, the latest version at the time of writing. For the examples in this guide, download avro-1.11.1.jar and avro-tools-1.11.1.jar.
Alternatively, if you are using Maven, add the following dependency to your POM:
@@ -39,7 +39,7 @@ Alternatively, if you are using Maven, add the following dependency to your POM:
org.apache.avro
avro
- {{< avro_version >}}
+ 1.11.1
```
@@ -49,7 +49,7 @@ As well as the Avro Maven plugin (for performing code generation):
org.apache.avro
avro-maven-plugin
- {{< avro_version >}}
+ 1.11.1
generate-sources
@@ -101,13 +101,13 @@ Fields are defined via an array of objects, each of which defines a name and typ
Code generation allows us to automatically create classes based on our previously-defined schema. Once we have defined the relevant classes, there is no need to use the schema directly in our programs. We use the avro-tools jar to generate code as follows:
```shell
-java -jar /path/to/avro-tools-{{< avro_version >}}.jar compile schema
+java -jar /path/to/avro-tools-1.11.1.jar compile schema
```
This will generate the appropriate source files in a package based on the schema's namespace in the provided destination folder. For instance, to generate a User class in package example.avro from the schema defined above, run
```shell
-java -jar /path/to/avro-tools-{{< avro_version >}}.jar compile schema user.avsc .
+java -jar /path/to/avro-tools-1.11.1.jar compile schema user.avsc .
```
Note that if you using the Avro Maven plugin, there is no need to manually invoke the schema compiler; the plugin automatically performs code generation on any .avsc files present in the configured source directory.
diff --git a/doc/content/en/docs/1.11.1/Getting started (Python)/_index.md b/doc/content/en/docs/1.11.1/Getting started (Python)/_index.md
index ded4aca5d89..26c36f0f1ec 100644
--- a/doc/content/en/docs/1.11.1/Getting started (Python)/_index.md
+++ b/doc/content/en/docs/1.11.1/Getting started (Python)/_index.md
@@ -39,11 +39,11 @@ For Python, the easiest way to get started is to install it from PyPI. Python's
$ python3 -m pip install avro
```
-The official releases of the Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the Apache Avro™ Releases page. This guide uses Avro {{< avro_version >}}, the latest version at the time of writing. Download and unzip avro-{{< avro_version >}}.tar.gz, and install via python setup.py (this will probably require root privileges). Ensure that you can import avro from a Python prompt.
+The official releases of the Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the Apache Avro™ Releases page. This guide uses Avro 1.11.1, the latest version at the time of writing. Download and unzip avro-1.11.1.tar.gz, and install via python setup.py (this will probably require root privileges). Ensure that you can import avro from a Python prompt.
```shell
-$ tar xvf avro-{{< avro_version >}}.tar.gz
-$ cd avro-{{< avro_version >}}
+$ tar xvf avro-1.11.1.tar.gz
+$ cd avro-1.11.1
$ python setup.py install
$ python
>>> import avro # should not raise ImportError
diff --git a/doc/content/en/docs/1.11.1/MapReduce guide/_index.md b/doc/content/en/docs/1.11.1/MapReduce guide/_index.md
index f262bc6e2a7..e51def02142 100644
--- a/doc/content/en/docs/1.11.1/MapReduce guide/_index.md
+++ b/doc/content/en/docs/1.11.1/MapReduce guide/_index.md
@@ -35,12 +35,12 @@ The code from this guide is included in the Avro docs under examples/mr-example.
org.apache.avro
avro
- {{< avro_version >}}
+ 1.11.1
org.apache.avro
avro-mapred
- {{< avro_version >}}
+ 1.11.1
org.apache.hadoop
@@ -53,7 +53,7 @@ And the following plugin:
org.apache.avro
avro-maven-plugin
- {{< avro_version >}}
+ 1.11.1
generate-sources
@@ -71,7 +71,7 @@ And the following plugin:
If you do not configure the *sourceDirectory* and *outputDirectory* properties, the defaults will be used. The *sourceDirectory* property defaults to *src/main/avro*. The *outputDirectory* property defaults to *target/generated-sources*. You can change the paths to match your project layout.
-Alternatively, Avro jars can be downloaded directly from the Apache Avro™ Releases [page](https://avro.apache.org/releases.html). The relevant Avro jars for this guide are *avro-{{< avro_version >}}.jar* and *avro-mapred-{{< avro_version >}}.jar*, as well as *avro-tools-{{< avro_version >}}.jar* for code generation and viewing Avro data files as JSON. In addition, you will need to install Hadoop in order to use MapReduce.
+Alternatively, Avro jars can be downloaded directly from the Apache Avro™ Releases [page](https://avro.apache.org/releases.html). The relevant Avro jars for this guide are *avro-1.11.1.jar* and *avro-mapred-1.11.1.jar*, as well as *avro-tools-1.11.1.jar* for code generation and viewing Avro data files as JSON. In addition, you will need to install Hadoop in order to use MapReduce.
## Example: ColorCount
Below is a simple example of a MapReduce that uses Avro. There is an example for both the old (org.apache.hadoop.mapred) and new (org.apache.hadoop.mapreduce) APIs under *examples/mr-example/src/main/java/example/*. _MapredColorCount_ is the example for the older mapred API while _MapReduceColorCount_ is the example for the newer mapreduce API. Both examples are below, but we will detail the mapred API in our subsequent examples.
@@ -291,7 +291,7 @@ part-00000.avro _SUCCESS
```
You can check the contents of the generated Avro file using the avro-tools jar:
```shell
-$ java -jar /path/to/avro-tools-{{< avro_version >}}.jar tojson output/part-00000.avro
+$ java -jar /path/to/avro-tools-1.11.1.jar tojson output/part-00000.avro
{"value": 3, "key": "blue"}
{"value": 7, "key": "green"}
{"value": 1, "key": "none"}
diff --git a/doc/content/en/docs/1.11.2/Getting started (Java)/_index.md b/doc/content/en/docs/1.11.2/Getting started (Java)/_index.md
index f3944cf020e..20a680b1d88 100644
--- a/doc/content/en/docs/1.11.2/Getting started (Java)/_index.md
+++ b/doc/content/en/docs/1.11.2/Getting started (Java)/_index.md
@@ -31,7 +31,7 @@ This is a short guide for getting started with Apache Avro™ using Java. This g
## Download
-Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the [Apache Avro™ Download]({{< relref "/project/download" >}}) page. This guide uses Avro {{< avro_version >}}, the latest version at the time of writing. For the examples in this guide, download avro-{{< avro_version >}}.jar and avro-tools-{{< avro_version >}}.jar.
+Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the [Apache Avro™ Download]({{< relref "/project/download" >}}) page. This guide uses Avro 1.11.2, the latest version at the time of writing. For the examples in this guide, download avro-1.11.2.jar and avro-tools-1.11.2.jar.
Alternatively, if you are using Maven, add the following dependency to your POM:
@@ -39,7 +39,7 @@ Alternatively, if you are using Maven, add the following dependency to your POM:
org.apache.avro
avro
- {{< avro_version >}}
+ 1.11.2
```
@@ -49,7 +49,7 @@ As well as the Avro Maven plugin (for performing code generation):
org.apache.avro
avro-maven-plugin
- {{< avro_version >}}
+ 1.11.2
generate-sources
@@ -101,13 +101,13 @@ Fields are defined via an array of objects, each of which defines a name and typ
Code generation allows us to automatically create classes based on our previously-defined schema. Once we have defined the relevant classes, there is no need to use the schema directly in our programs. We use the avro-tools jar to generate code as follows:
```shell
-java -jar /path/to/avro-tools-{{< avro_version >}}.jar compile schema
+java -jar /path/to/avro-tools-1.11.2.jar compile schema
```
This will generate the appropriate source files in a package based on the schema's namespace in the provided destination folder. For instance, to generate a User class in package example.avro from the schema defined above, run
```shell
-java -jar /path/to/avro-tools-{{< avro_version >}}.jar compile schema user.avsc .
+java -jar /path/to/avro-tools-1.11.2.jar compile schema user.avsc .
```
Note that if you using the Avro Maven plugin, there is no need to manually invoke the schema compiler; the plugin automatically performs code generation on any .avsc files present in the configured source directory.
diff --git a/doc/content/en/docs/1.11.2/Getting started (Python)/_index.md b/doc/content/en/docs/1.11.2/Getting started (Python)/_index.md
index f11fcc05134..96ae73660ae 100644
--- a/doc/content/en/docs/1.11.2/Getting started (Python)/_index.md
+++ b/doc/content/en/docs/1.11.2/Getting started (Python)/_index.md
@@ -39,11 +39,11 @@ For Python, the easiest way to get started is to install it from PyPI. Python's
$ python3 -m pip install avro
```
-The official releases of the Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the Apache Avro™ Releases page. This guide uses Avro {{< avro_version >}}, the latest version at the time of writing. Download and unzip avro-{{< avro_version >}}.tar.gz, and install via python setup.py (this will probably require root privileges). Ensure that you can import avro from a Python prompt.
+The official releases of the Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the Apache Avro™ Releases page. This guide uses Avro 1.11.2, the latest version at the time of writing. Download and unzip avro-1.11.2.tar.gz, and install via python setup.py (this will probably require root privileges). Ensure that you can import avro from a Python prompt.
```shell
-$ tar xvf avro-{{< avro_version >}}.tar.gz
-$ cd avro-{{< avro_version >}}
+$ tar xvf avro-1.11.2.tar.gz
+$ cd avro-1.11.2
$ python setup.py install
$ python
>>> import avro # should not raise ImportError
diff --git a/doc/content/en/docs/1.11.2/MapReduce guide/_index.md b/doc/content/en/docs/1.11.2/MapReduce guide/_index.md
index f262bc6e2a7..5e767936c18 100644
--- a/doc/content/en/docs/1.11.2/MapReduce guide/_index.md
+++ b/doc/content/en/docs/1.11.2/MapReduce guide/_index.md
@@ -35,12 +35,12 @@ The code from this guide is included in the Avro docs under examples/mr-example.
org.apache.avro
avro
- {{< avro_version >}}
+ 1.11.2
org.apache.avro
avro-mapred
- {{< avro_version >}}
+ 1.11.2
org.apache.hadoop
@@ -53,7 +53,7 @@ And the following plugin:
org.apache.avro
avro-maven-plugin
- {{< avro_version >}}
+ 1.11.2
generate-sources
@@ -71,7 +71,7 @@ And the following plugin:
If you do not configure the *sourceDirectory* and *outputDirectory* properties, the defaults will be used. The *sourceDirectory* property defaults to *src/main/avro*. The *outputDirectory* property defaults to *target/generated-sources*. You can change the paths to match your project layout.
-Alternatively, Avro jars can be downloaded directly from the Apache Avro™ Releases [page](https://avro.apache.org/releases.html). The relevant Avro jars for this guide are *avro-{{< avro_version >}}.jar* and *avro-mapred-{{< avro_version >}}.jar*, as well as *avro-tools-{{< avro_version >}}.jar* for code generation and viewing Avro data files as JSON. In addition, you will need to install Hadoop in order to use MapReduce.
+Alternatively, Avro jars can be downloaded directly from the Apache Avro™ Releases [page](https://avro.apache.org/releases.html). The relevant Avro jars for this guide are *avro-1.11.2.jar* and *avro-mapred-1.11.2.jar*, as well as *avro-tools-1.11.2.jar* for code generation and viewing Avro data files as JSON. In addition, you will need to install Hadoop in order to use MapReduce.
## Example: ColorCount
Below is a simple example of a MapReduce that uses Avro. There is an example for both the old (org.apache.hadoop.mapred) and new (org.apache.hadoop.mapreduce) APIs under *examples/mr-example/src/main/java/example/*. _MapredColorCount_ is the example for the older mapred API while _MapReduceColorCount_ is the example for the newer mapreduce API. Both examples are below, but we will detail the mapred API in our subsequent examples.
@@ -291,7 +291,7 @@ part-00000.avro _SUCCESS
```
You can check the contents of the generated Avro file using the avro-tools jar:
```shell
-$ java -jar /path/to/avro-tools-{{< avro_version >}}.jar tojson output/part-00000.avro
+$ java -jar /path/to/avro-tools-1.11.2.jar tojson output/part-00000.avro
{"value": 3, "key": "blue"}
{"value": 7, "key": "green"}
{"value": 1, "key": "none"}
diff --git a/doc/content/en/docs/1.11.3/Getting started (Java)/_index.md b/doc/content/en/docs/1.11.3/Getting started (Java)/_index.md
index f3944cf020e..60e3a827340 100644
--- a/doc/content/en/docs/1.11.3/Getting started (Java)/_index.md
+++ b/doc/content/en/docs/1.11.3/Getting started (Java)/_index.md
@@ -31,7 +31,7 @@ This is a short guide for getting started with Apache Avro™ using Java. This g
## Download
-Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the [Apache Avro™ Download]({{< relref "/project/download" >}}) page. This guide uses Avro {{< avro_version >}}, the latest version at the time of writing. For the examples in this guide, download avro-{{< avro_version >}}.jar and avro-tools-{{< avro_version >}}.jar.
+Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the [Apache Avro™ Download]({{< relref "/project/download" >}}) page. This guide uses Avro 1.11.3, the latest version at the time of writing. For the examples in this guide, download avro-1.11.3.jar and avro-tools-1.11.3.jar.
Alternatively, if you are using Maven, add the following dependency to your POM:
@@ -39,7 +39,7 @@ Alternatively, if you are using Maven, add the following dependency to your POM:
org.apache.avro
avro
- {{< avro_version >}}
+ 1.11.3
```
@@ -49,7 +49,7 @@ As well as the Avro Maven plugin (for performing code generation):
org.apache.avro
avro-maven-plugin
- {{< avro_version >}}
+ 1.11.3
generate-sources
@@ -101,13 +101,13 @@ Fields are defined via an array of objects, each of which defines a name and typ
Code generation allows us to automatically create classes based on our previously-defined schema. Once we have defined the relevant classes, there is no need to use the schema directly in our programs. We use the avro-tools jar to generate code as follows:
```shell
-java -jar /path/to/avro-tools-{{< avro_version >}}.jar compile schema
+java -jar /path/to/avro-tools-1.11.3.jar compile schema
```
This will generate the appropriate source files in a package based on the schema's namespace in the provided destination folder. For instance, to generate a User class in package example.avro from the schema defined above, run
```shell
-java -jar /path/to/avro-tools-{{< avro_version >}}.jar compile schema user.avsc .
+java -jar /path/to/avro-tools-1.11.3.jar compile schema user.avsc .
```
Note that if you using the Avro Maven plugin, there is no need to manually invoke the schema compiler; the plugin automatically performs code generation on any .avsc files present in the configured source directory.
diff --git a/doc/content/en/docs/1.11.3/Getting started (Python)/_index.md b/doc/content/en/docs/1.11.3/Getting started (Python)/_index.md
index f11fcc05134..8675b399fcd 100644
--- a/doc/content/en/docs/1.11.3/Getting started (Python)/_index.md
+++ b/doc/content/en/docs/1.11.3/Getting started (Python)/_index.md
@@ -39,11 +39,11 @@ For Python, the easiest way to get started is to install it from PyPI. Python's
$ python3 -m pip install avro
```
-The official releases of the Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the Apache Avro™ Releases page. This guide uses Avro {{< avro_version >}}, the latest version at the time of writing. Download and unzip avro-{{< avro_version >}}.tar.gz, and install via python setup.py (this will probably require root privileges). Ensure that you can import avro from a Python prompt.
+The official releases of the Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the Apache Avro™ Releases page. This guide uses Avro 1.11.3, the latest version at the time of writing. Download and unzip avro-1.11.3.tar.gz, and install via python setup.py (this will probably require root privileges). Ensure that you can import avro from a Python prompt.
```shell
-$ tar xvf avro-{{< avro_version >}}.tar.gz
-$ cd avro-{{< avro_version >}}
+$ tar xvf avro-1.11.3.tar.gz
+$ cd avro-1.11.3
$ python setup.py install
$ python
>>> import avro # should not raise ImportError
diff --git a/doc/content/en/docs/1.11.3/MapReduce guide/_index.md b/doc/content/en/docs/1.11.3/MapReduce guide/_index.md
index f262bc6e2a7..0d2df4db1e8 100644
--- a/doc/content/en/docs/1.11.3/MapReduce guide/_index.md
+++ b/doc/content/en/docs/1.11.3/MapReduce guide/_index.md
@@ -35,12 +35,12 @@ The code from this guide is included in the Avro docs under examples/mr-example.
org.apache.avro
avro
- {{< avro_version >}}
+ 1.11.3
org.apache.avro
avro-mapred
- {{< avro_version >}}
+ 1.11.3
org.apache.hadoop
@@ -53,7 +53,7 @@ And the following plugin:
org.apache.avro
avro-maven-plugin
- {{< avro_version >}}
+ 1.11.3
generate-sources
@@ -71,7 +71,7 @@ And the following plugin:
If you do not configure the *sourceDirectory* and *outputDirectory* properties, the defaults will be used. The *sourceDirectory* property defaults to *src/main/avro*. The *outputDirectory* property defaults to *target/generated-sources*. You can change the paths to match your project layout.
-Alternatively, Avro jars can be downloaded directly from the Apache Avro™ Releases [page](https://avro.apache.org/releases.html). The relevant Avro jars for this guide are *avro-{{< avro_version >}}.jar* and *avro-mapred-{{< avro_version >}}.jar*, as well as *avro-tools-{{< avro_version >}}.jar* for code generation and viewing Avro data files as JSON. In addition, you will need to install Hadoop in order to use MapReduce.
+Alternatively, Avro jars can be downloaded directly from the Apache Avro™ Releases [page](https://avro.apache.org/releases.html). The relevant Avro jars for this guide are *avro-1.11.3.jar* and *avro-mapred-1.11.3.jar*, as well as *avro-tools-1.11.3.jar* for code generation and viewing Avro data files as JSON. In addition, you will need to install Hadoop in order to use MapReduce.
## Example: ColorCount
Below is a simple example of a MapReduce that uses Avro. There is an example for both the old (org.apache.hadoop.mapred) and new (org.apache.hadoop.mapreduce) APIs under *examples/mr-example/src/main/java/example/*. _MapredColorCount_ is the example for the older mapred API while _MapReduceColorCount_ is the example for the newer mapreduce API. Both examples are below, but we will detail the mapred API in our subsequent examples.
@@ -291,7 +291,7 @@ part-00000.avro _SUCCESS
```
You can check the contents of the generated Avro file using the avro-tools jar:
```shell
-$ java -jar /path/to/avro-tools-{{< avro_version >}}.jar tojson output/part-00000.avro
+$ java -jar /path/to/avro-tools-1.11.3.jar tojson output/part-00000.avro
{"value": 3, "key": "blue"}
{"value": 7, "key": "green"}
{"value": 1, "key": "none"}
diff --git a/doc/content/en/docs/1.12.0/Getting started (Java)/_index.md b/doc/content/en/docs/1.12.0/Getting started (Java)/_index.md
index 429e9837641..c4022685395 100644
--- a/doc/content/en/docs/1.12.0/Getting started (Java)/_index.md
+++ b/doc/content/en/docs/1.12.0/Getting started (Java)/_index.md
@@ -31,7 +31,7 @@ This is a short guide for getting started with Apache Avro™ using Java. This g
## Download
-Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the [Apache Avro™ Download]({{< relref "/project/download" >}}) page. This guide uses Avro {{< avro_version >}}, the latest version at the time of writing. For the examples in this guide, download avro-{{< avro_version >}}.jar and avro-tools-{{< avro_version >}}.jar.
+Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the [Apache Avro™ Download]({{< relref "/project/download" >}}) page. This guide uses Avro 1.12.0, the latest version at the time of writing. For the examples in this guide, download avro-1.12.0.jar and avro-tools-1.12.0.jar.
Alternatively, if you are using Maven, add the following dependency to your POM:
@@ -39,7 +39,7 @@ Alternatively, if you are using Maven, add the following dependency to your POM:
org.apache.avro
avro
- {{< avro_version >}}
+ 1.12.0
```
@@ -49,7 +49,7 @@ As well as the Avro Maven plugin (for performing code generation):
org.apache.avro
avro-maven-plugin
- {{< avro_version >}}
+ 1.12.0
${project.basedir}/src/main/avro/
${project.basedir}/src/main/java/
@@ -101,13 +101,13 @@ Fields are defined via an array of objects, each of which defines a name and typ
Code generation allows us to automatically create classes based on our previously-defined schema. Once we have defined the relevant classes, there is no need to use the schema directly in our programs. We use the avro-tools jar to generate code as follows:
```shell
-java -jar /path/to/avro-tools-{{< avro_version >}}.jar compile schema
+java -jar /path/to/avro-tools-1.12.0.jar compile schema
```
This will generate the appropriate source files in a package based on the schema's namespace in the provided destination folder. For instance, to generate a User class in package example.avro from the schema defined above, run
```shell
-java -jar /path/to/avro-tools-{{< avro_version >}}.jar compile schema user.avsc .
+java -jar /path/to/avro-tools-1.12.0.jar compile schema user.avsc .
```
Note that if you using the Avro Maven plugin, there is no need to manually invoke the schema compiler; the plugin automatically performs code generation on any .avsc files present in the configured source directory.
diff --git a/doc/content/en/docs/1.12.0/Getting started (Python)/_index.md b/doc/content/en/docs/1.12.0/Getting started (Python)/_index.md
index 44e3a8f37fd..8ec8f6d4e82 100644
--- a/doc/content/en/docs/1.12.0/Getting started (Python)/_index.md
+++ b/doc/content/en/docs/1.12.0/Getting started (Python)/_index.md
@@ -39,11 +39,11 @@ For Python, the easiest way to get started is to install it from PyPI. Python's
$ python3 -m pip install avro
```
-The official releases of the Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the Apache Avro™ Releases page. This guide uses Avro {{< avro_version >}}, the latest version at the time of writing. Download and unzip avro-{{< avro_version >}}.tar.gz, and install via python setup.py (this will probably require root privileges). Ensure that you can import avro from a Python prompt.
+The official releases of the Avro implementations for C, C++, C#, Java, PHP, Python, and Ruby can be downloaded from the Apache Avro™ Releases page. This guide uses Avro 1.12.0, the latest version at the time of writing. Download and unzip avro-1.12.0.tar.gz, and install via python setup.py (this will probably require root privileges). Ensure that you can import avro from a Python prompt.
```shell
-$ tar xvf avro-{{< avro_version >}}.tar.gz
-$ cd avro-{{< avro_version >}}
+$ tar xvf avro-1.12.0.tar.gz
+$ cd avro-1.12.0
$ python setup.py install
$ python
>>> import avro # should not raise ImportError
diff --git a/doc/content/en/docs/1.12.0/MapReduce guide/_index.md b/doc/content/en/docs/1.12.0/MapReduce guide/_index.md
index f262bc6e2a7..fdae67a78c6 100644
--- a/doc/content/en/docs/1.12.0/MapReduce guide/_index.md
+++ b/doc/content/en/docs/1.12.0/MapReduce guide/_index.md
@@ -35,12 +35,12 @@ The code from this guide is included in the Avro docs under examples/mr-example.
org.apache.avro
avro
- {{< avro_version >}}
+ 1.12.0
org.apache.avro
avro-mapred
- {{< avro_version >}}
+ 1.12.0
org.apache.hadoop
@@ -53,7 +53,7 @@ And the following plugin:
org.apache.avro
avro-maven-plugin
- {{< avro_version >}}
+ 1.12.0
generate-sources
@@ -71,7 +71,7 @@ And the following plugin:
If you do not configure the *sourceDirectory* and *outputDirectory* properties, the defaults will be used. The *sourceDirectory* property defaults to *src/main/avro*. The *outputDirectory* property defaults to *target/generated-sources*. You can change the paths to match your project layout.
-Alternatively, Avro jars can be downloaded directly from the Apache Avro™ Releases [page](https://avro.apache.org/releases.html). The relevant Avro jars for this guide are *avro-{{< avro_version >}}.jar* and *avro-mapred-{{< avro_version >}}.jar*, as well as *avro-tools-{{< avro_version >}}.jar* for code generation and viewing Avro data files as JSON. In addition, you will need to install Hadoop in order to use MapReduce.
+Alternatively, Avro jars can be downloaded directly from the Apache Avro™ Releases [page](https://avro.apache.org/releases.html). The relevant Avro jars for this guide are *avro-1.12.0.jar* and *avro-mapred-1.12.0.jar*, as well as *avro-tools-1.12.0.jar* for code generation and viewing Avro data files as JSON. In addition, you will need to install Hadoop in order to use MapReduce.
## Example: ColorCount
Below is a simple example of a MapReduce that uses Avro. There is an example for both the old (org.apache.hadoop.mapred) and new (org.apache.hadoop.mapreduce) APIs under *examples/mr-example/src/main/java/example/*. _MapredColorCount_ is the example for the older mapred API while _MapReduceColorCount_ is the example for the newer mapreduce API. Both examples are below, but we will detail the mapred API in our subsequent examples.
@@ -291,7 +291,7 @@ part-00000.avro _SUCCESS
```
You can check the contents of the generated Avro file using the avro-tools jar:
```shell
-$ java -jar /path/to/avro-tools-{{< avro_version >}}.jar tojson output/part-00000.avro
+$ java -jar /path/to/avro-tools-1.12.0.jar tojson output/part-00000.avro
{"value": 3, "key": "blue"}
{"value": 7, "key": "green"}
{"value": 1, "key": "none"}