-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_development.py
209 lines (169 loc) · 6.65 KB
/
model_development.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.metrics import accuracy_score, classification_report, roc_auc_score, confusion_matrix
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import seaborn as sns
import joblib
# Load and preprocess the data
print("Loading and preprocessing data...")
df = pd.read_csv('framingham.csv')
# Handle missing values
imputer = SimpleImputer(strategy='median')
df_numeric = df.select_dtypes(include=[np.number])
df[df_numeric.columns] = imputer.fit_transform(df_numeric)
# Separate features and target
X = df.drop('TenYearCHD', axis=1)
y = df['TenYearCHD']
# Save original feature names before encoding
original_features = list(X.columns)
# Convert categorical variables to numeric
X = pd.get_dummies(X, drop_first=True)
# Save the encoded feature names
encoded_features = list(X.columns)
# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
# Scale the features
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
# Convert back to DataFrame to maintain feature names
X_train_scaled = pd.DataFrame(X_train_scaled, columns=X_train.columns)
X_test_scaled = pd.DataFrame(X_test_scaled, columns=X_test.columns)
# Initialize models
models = {
'Logistic Regression': LogisticRegression(random_state=42, max_iter=1000),
'Random Forest': RandomForestClassifier(random_state=42),
'SVM': SVC(random_state=42, probability=True),
'Decision Tree': DecisionTreeClassifier(random_state=42)
}
# Dictionary to store results
results = {}
# Train and evaluate each model
print("\nTraining and evaluating models...")
for name, model in models.items():
print(f"\nTraining {name}...")
# Train the model
model.fit(X_train_scaled, y_train)
# Make predictions
y_pred = model.predict(X_test_scaled)
# Calculate metrics
accuracy = accuracy_score(y_test, y_pred)
roc_auc = roc_auc_score(y_test, model.predict_proba(X_test_scaled)[:, 1])
# Store results
results[name] = {
'accuracy': accuracy,
'roc_auc': roc_auc,
'confusion_matrix': confusion_matrix(y_test, y_pred),
'classification_report': classification_report(y_test, y_pred)
}
print(f"{name} Results:")
print(f"Accuracy: {accuracy:.4f}")
print(f"ROC AUC: {roc_auc:.4f}")
print("\nClassification Report:")
print(results[name]['classification_report'])
# Perform GridSearchCV for Random Forest
print("\nPerforming GridSearchCV for Random Forest...")
rf_params = {
'n_estimators': [100, 200, 300],
'max_depth': [10, 20, 30, None],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]
}
rf_grid = GridSearchCV(RandomForestClassifier(random_state=42),
rf_params,
cv=5,
scoring='roc_auc',
n_jobs=-1)
rf_grid.fit(X_train_scaled, y_train)
print("\nBest Random Forest Parameters:", rf_grid.best_params_)
print("Best ROC AUC Score:", rf_grid.best_score_)
# Train final model with best parameters
final_model = RandomForestClassifier(**rf_grid.best_params_, random_state=42)
final_model.fit(X_train_scaled, y_train)
# Get feature importance
feature_importance = pd.DataFrame({
'feature': X_train.columns,
'importance': final_model.feature_importances_
})
feature_importance = feature_importance.sort_values('importance', ascending=False)
# Plot feature importance
plt.figure(figsize=(12, 6))
sns.barplot(x='importance', y='feature', data=feature_importance.head(10))
plt.title('Top 10 Most Important Features')
plt.tight_layout()
plt.savefig('feature_importance.png')
plt.close()
# Final model evaluation
y_pred_final = final_model.predict(X_test_scaled)
final_accuracy = accuracy_score(y_test, y_pred_final)
final_roc_auc = roc_auc_score(y_test, final_model.predict_proba(X_test_scaled)[:, 1])
print("\nFinal Model Performance:")
print(f"Accuracy: {final_accuracy:.4f}")
print(f"ROC AUC: {final_roc_auc:.4f}")
print("\nClassification Report:")
print(classification_report(y_test, y_pred_final))
# Save the model pipeline components
model_info = {
'model': final_model,
'scaler': scaler,
'original_features': original_features,
'encoded_features': encoded_features,
'feature_importance': feature_importance.to_dict()
}
joblib.dump(model_info, 'heart_disease_model_pipeline.joblib')
print("\nModel pipeline has been saved to disk.")
def prepare_input_data(data):
"""
Prepare input data for prediction by applying the same preprocessing steps
"""
# Ensure all original features are present
missing_cols = set(original_features) - set(data.columns)
if missing_cols:
raise ValueError(f"Missing features in input data: {missing_cols}")
# Convert to DataFrame if not already
if not isinstance(data, pd.DataFrame):
data = pd.DataFrame(data)
# Handle missing values
numeric_cols = data.select_dtypes(include=[np.number]).columns
data[numeric_cols] = SimpleImputer(strategy='median').fit_transform(data[numeric_cols])
# Apply one-hot encoding
data_encoded = pd.get_dummies(data, drop_first=True)
# Ensure all encoded features are present
for col in encoded_features:
if col not in data_encoded.columns:
data_encoded[col] = 0
# Ensure correct column order
data_encoded = data_encoded[encoded_features]
return data_encoded
def predict_heart_disease_risk(data):
"""
Make predictions on new data.
data should be a DataFrame with the same features as the training data
"""
try:
# Prepare the input data
processed_data = prepare_input_data(data)
# Scale the features
data_scaled = scaler.transform(processed_data)
# Make prediction
prediction = final_model.predict_proba(data_scaled)[:, 1]
return prediction
except Exception as e:
print(f"Error in prediction: {str(e)}")
raise
print("\nExample of using the prediction function:")
# Create a sample input
sample_input = X_test.iloc[0:1].copy()
risk_probability = predict_heart_disease_risk(sample_input)
print(f"Predicted heart disease risk probability: {risk_probability[0]:.4f}")
# Print feature names for reference
print("\nRequired features for prediction:")
for feature in original_features:
print(feature)