-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_image.py
51 lines (38 loc) · 1.21 KB
/
evaluate_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
from model import AutoEncoder
import argparse
import os
import skimage
from skimage import io
from torchvision import transforms
from skimage import img_as_float
parser = argparse.ArgumentParser()
parser.add_argument('--load_prev_model_gen', help="model path")
parser.add_argument('--input_dir', help="input image directory")
DEMO_DIR = './demo/'
if not os.path.exists(DEMO_DIR):
os.makedirs(DEMO_DIR)
args = parser.parse_args()
trans = transforms.Compose([transforms.ToTensor()])
# if not args.device:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# else:
# device = torch.device(args.device)
gen = AutoEncoder(out_channels=3)
gen.load_state_dict(torch.load(args.load_prev_model_gen))
gen = gen.to(device)
images = os.listdir(args.input_dir)
gen.eval()
for i, img in enumerate(images):
print(i, img)
# exit()
image = io.imread(args.input_dir + img)
image = img_as_float(skimage.color.rgb2gray(image))
t_img = trans(torch.from_numpy(image).float().unsqueeze(0).permute(1,2,0).numpy()).unsqueeze(0).to(device)
# print(t_img.shape)
# exit()
with torch.no_grad():
out = gen(t_img)
out_img = out.squeeze(0).permute(1,2,0).cpu().numpy()
io.imsave( DEMO_DIR + img, out_img)
# break