-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain2.py
431 lines (323 loc) · 13 KB
/
main2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
# import matplotlib
# matplotlib.use('Agg')
import torch
import torch.nn as nn
import torch.optim as optim
import torch.functional as F
import numpy as np
import tqdm
import argparse
import os
from model import Generator, Discriminator
from dataloader_efficient import *
import datetime
from itertools import cycle
import random
import gc
import skimage
from skimage.io import imsave
import resource
import torch.nn.functional as F
from tensorboard_logger import configure, log_value
from tensorboardX import SummaryWriter
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import ImageGrid
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', help='path to data folder', required=True)
parser.add_argument('--image_dim', type=int, help='image dimensions', required=True)
parser.add_argument('--load_prev_model_gen', help='path to previous model')
parser.add_argument('--load_prev_model_disc', help='decoder path')
parser.add_argument('--batch_size_train', type=int, help="train batch size")
parser.add_argument('--batch_size_test', type=int, help="test batch size")
# parser.add_argument('--load_prev_model_disc', help='discriminator path')
parser.add_argument('--reset_files', help='reset file stats(True/False)')
parser.add_argument("--start_epoch", type=int, help="specify start epoch to continue from")
parser.add_argument("--end_epoch", type=int, help="specify end epoch to continue to")
parser.add_argument("--learning_rate_ae", type=float ,help="learning rate")
parser.add_argument("--learning_rate_color", type=float ,help="learning rate")
parser.add_argument("--test_mode", type=bool, help="run in test mode")
args = parser.parse_args()
if args.test_mode:
print('.....................................RUNNING IN TEST MODE................................')
LOG_DIR = './log_dir/'
np.set_printoptions(threshold=np.nan)
summary_writer = None
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
SAVED_MODEL_DIR = './trained_models/'
RANDOM_OUTPUTS_DIR = './rand_outputs/'
EVAL_DIR = './test_outputs/'
if not os.path.exists(SAVED_MODEL_DIR):
os.makedirs(SAVED_MODEL_DIR)
if not os.path.exists(RANDOM_OUTPUTS_DIR):
os.makedirs(RANDOM_OUTPUTS_DIR)
if not os.path.exists(LOG_DIR):
os.makedirs(LOG_DIR)
def train(g_model, d_model, learning_rate_ae, learning_rate_color, train_dataloader, test_dataloader, now):
print("Total Train batches :", len(train_dataloader), "Total test batches:", len(test_dataloader))
global summary_writer
draw_iter = 10
all_save_iter = 500
cur_save_iter = 100
test_iter = 100
if args.test_mode:
draw_iter = 1
all_save_iter = 1
cur_save_iter = 1
test_iter = 1
cur_model_dir = SAVED_MODEL_DIR + now + '/'
filenames = os.listdir(args.data_path + COLOR_DIR)
l_criteron = nn.MSELoss()
ab_criterion = nn.BCELoss()
if args.start_epoch:
start_epoch = args.start_epoch
else:start_epoch = 0
if args.end_epoch:
end_epoch = args.end_epoch
else:end_epoch = 100
criterion_ae = nn.MSELoss()
optimizer_g = optim.Adam(g_model.parameters(), lr=learning_rate_ae)
optimizer_d = optim.Adam(d_model.parameters(), lr=learning_rate_color)
save_model_info(g_model, d_model, cur_model_dir, start_epoch, end_epoch, learning_rate_ae, learning_rate_color, optimizer_g, optimizer_d)
for i in range(start_epoch, end_epoch):
for j, (x, (y_l, y_ab)) in enumerate(train_dataloader):
g_model.train()
d_model.train()
target_y = torch.ones(len(y_ab)).to(device)
target_x = torch.zeros(len(y_ab)).to(device)
g_model.train_stat = True
correct = 0
x = x + torch.randn(x.shape)
x = x.to(device)
y_l = y_l.to(device)
y_ab = y_ab.to(device)
optimizer_g.zero_grad()
optimizer_d.zero_grad()
_, out_ab = g_model(x)
d_real = d_model(y_ab)
d_fake = d_model(out_ab)
d_loss_real = ab_criterion(d_real, target_y)
d_loss_fake = ab_criterion(d_fake, target_x)
d_loss = d_loss_fake + d_loss_real
d_loss.backward()
optimizer_d.step()
optimizer_d.zero_grad()
optimizer_g.zero_grad()
out_l, out_ab = g_model(x)
d_fake = d_model(out_ab)
loss_l = 1e-5 * criterion_ae(out_l, y_l)
g_loss = ab_criterion(d_fake, target_y)
loss_gen = 5.0 * g_loss + loss_l
loss_gen.backward()
optimizer_g.step()
#####################################################################################################
# target_y = torch.ones(len(y_ab)).to(device)
# target_x = torch.zeros(len(y_ab)).to(device)
# disc_out_real = d_model(y_ab)
# correct = torch.sum(torch.round(disc_out_real) == target_y).item()
# loss_real = criterion_color(disc_out_real, target_y)
# loss_real.backward()
# out_l, out_ab = g_model(x)
# disc_out_fake = d_model(out_ab.detach())
# correct += torch.sum(torch.round(disc_out_fake) == target_x).item()
# loss_fake = criterion_color(disc_out_fake, target_x)
# loss_fake.backward()
# optimizer_d.step()
# for k in range(1):
# out_l, out_ab = g_model(x)
# disc_out_fake = d_model(out_ab)
# loss_l = criterion_ae(out_l, y_l)
# # loss_ab_gen = 0.5 * torch.mean((torch.log(disc_out_fake) - torch.log(1 - disc_out_fake))**2)
# loss_ab_gen = criterion_color(disc_out_fake, target_y)
# loss_gen = 0.5 * loss_l + loss_ab_gen
# loss_gen.backward()
# optimizer_g.step()
####################################################################################################################
# value = 'Iter : %d Batch: %d D loss real: %.4f D Loss fake: %.4f AE loss: %.4f GEN Color Loss: %.4f\n'%(i, j, loss_real.item(), loss_fake.item(), loss_l.item(), loss_ab_gen.item())
value = 'Iter : %d Batch: %d D loss %.4f AE loss: %.4f GEN Color Loss: %.4f G_loss %.4f\n'%(i, j, d_loss.item(), loss_l.item(), loss_gen.item(), g_loss.item())
print(value)
summary_writer.add_scalar("D loss", d_loss.item())
summary_writer.add_scalar("AE loss", loss_l.item())
summary_writer.add_scalar('GEN Loss', loss_gen.item())
update_readings(cur_model_dir + 'train_loss_batch.txt', value)
if j % draw_iter == 0:
draw_outputs(i, g_model, now, args.data_path, filenames, j)
if j % all_save_iter == 0:
print('..SAVING MODEL')
torch.save(g_model.state_dict(), cur_model_dir + 'colorize2gen_' + str(i) + '.pt')
print('GEN SAVED')
print('..SAVING MODEL')
torch.save(d_model.state_dict(), cur_model_dir + 'colorize2disc_' + str(i) + '.pt' )
print('Disc SAVED')
if j % cur_save_iter == 0:
print('SAVING MODEL')
torch.save(g_model.state_dict(), cur_model_dir + 'colorize_gen_cur.pt')
print('SAVED CURRENT')
if (j % test_iter == 0 and j != 0) or args.test_mode:
test_losses = test_model(g_model, test_dataloader, i, now, j)
avg_test_loss = np.average(test_losses)
summary_writer.add_scalar("Test loss", avg_test_loss)
print('Test loss Avg: ', avg_test_loss)
test_loss_val = '%d, %.4f\n' % (i, avg_test_loss)
update_readings(cur_model_dir + 'test_loss_avg.txt', test_loss_val)
if args.test_mode:
break
if args.test_mode:
break
def test_model(model, test_loader, epoch, now, batch_idx, test_len=100):
global summary_writer
if not os.path.exists(EVAL_DIR + now):
os.makedirs(EVAL_DIR + now)
model.eval()
model.train_stat = False
test_losses = []
diffs_avg = []
with torch.no_grad():
for i, (name, x, (y_l,y_ab)) in enumerate(test_loader):
x = x.to(device)
y_l = y_l.to(device)
y_ab = y_ab.to(device)
inputs = x.cpu()
# print('Inputs shape ', inputs.shape)
out_ab = model(x)
loss = F.mse_loss(out_ab, y_ab)
print('Test batch %d Loss %.4f'%(i, loss.item()))
test_losses.append(loss.item())
# print('got output')
# print('outputs shape', output.shape)
out_ab = out_ab.permute(0, 2, 3, 1)
output = out_ab.cpu().numpy()
j = random.randint(0, len(output) - 1)
a_channel = output[j][:, : , 0]
b_channel = output[j][:, :, 1]
image = inputs[j].squeeze(0).numpy()
# print(image.shape, a_channel.shape, b_channel.shape)
actual_color_image = plt.imread(args.data_path + COLOR_DIR + name[j])
true_ab = cv2.cvtColor(actual_color_image, cv2.COLOR_RGB2LAB)[:, :, 1:]
np_image = np.dstack((image, a_channel, b_channel))
np_rgb = cv2.cvtColor(np_image, cv2.COLOR_LAB2RGB)
diffs = color_diff(np.dstack((a_channel, b_channel)), true_ab, image)
# import ipdb; ipdb.set_trace()
file_name = EVAL_DIR + now + '/' + 'cimg_' + str(epoch) + '_' + str(batch_idx)+ '_' + str(j) + '_' + name[j]
# exit()
image_scan = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
grid = make_grid(actual_color_image, np_rgb, image_scan)
summary_writer.add_image("test image/" + 'cimg_' + str(epoch) +'_'+ str(batch_idx)+ '_' + str(j) + '_' + name[j], grid)
imsave(file_name, np_rgb)
# cv2.imwrite(file_name.split('.png')[0] + '_mri.png', image)
diffs_avg.append(np.average(diffs))
with open(EVAL_DIR+now+'/order.txt', 'a') as f:
val = "%d, %s\n" % (epoch, 'cimg_' + str(epoch)+ '_' + name[j])
f.writelines(val)
if i % 100 == 0 and i !=0:
break
if args.test_mode:
break
if args.test_mode:
break
summary_writer.add_scalar('lab difference', np.average(diffs_avg))
return test_losses
def draw_outputs(epoch, model, now, dset_path, filenames, batch_idx):
global summary_writer
if not os.path.exists(RANDOM_OUTPUTS_DIR+now):
os.makedirs(RANDOM_OUTPUTS_DIR+now)
file = open(RANDOM_OUTPUTS_DIR + now + '/order.txt', 'a')
indices = []
for i in range(5):
index = random.randint(0, len(filenames))
indices.append(index)
file.writelines(str(epoch) + ',' + filenames[index] + '\n')
file.close()
model.train_stat = False
model.eval()
model.to(device)
with torch.no_grad():
images = []
base_dir = dset_path + SCAN_DIR + '/'
image_names = os.listdir(base_dir)
for i, index in enumerate(indices):
image = cv2.imread(base_dir + filenames[index])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
input_image = torch.from_numpy(image_gray).float()
input_image = input_image.unsqueeze(0)
input_image = input_image.unsqueeze(0)
input_image = input_image.to(device)
output = model(input_image)
output = output.squeeze(0).permute(1, 2, 0)
np_image = output.cpu().numpy()
a_channel = np_image[:, :, 0]
b_channel = np_image[:, :, 1]
img_composed = np.dstack((image_gray, a_channel, b_channel))
img_rgb = cv2.cvtColor(img_composed, cv2.COLOR_LAB2RGB)
color_img = plt.imread(args.data_path + COLOR_DIR + filenames[index])
grid = make_grid( color_img, img_rgb, image)
summary_writer.add_image("random image/" + 'cimg_'+ str(epoch) + '_'+ str(batch_idx)+ '_' + str(i) + '_' + filenames[index], grid)
file_name = (RANDOM_OUTPUTS_DIR + now + '/' + 'cimg_'+ str(epoch) + '_' + str(batch_idx)+ '_' + str(i) + '_' + filenames[index]).strip()
# save_image_grid(RANDOM_OUTPUTS_DIR + now)
imsave(file_name.split('.png')[0] + '_mri.png', image)
imsave(file_name, img_rgb)
with open(file_name.split('.png')[0] + '_ab.txt','a') as f:
f.writelines('a channel\n')
f.writelines(str(a_channel) + '\n')
f.writelines('b channel\n')
f.writelines(str(b_channel) + '\n')
if args.test_mode:
break
# exit()
def main():
global summary_writer
now = str(datetime.datetime.now()) + '/'
cur_model_dir = SAVED_MODEL_DIR + now
os.makedirs(cur_model_dir)
summary_writer = SummaryWriter(LOG_DIR + now)
if args.reset_files and (args.reset_files == 'False'):
reset = False
else:
reset = True
if reset:
print('Resetting files')
f = open(cur_model_dir + '/'+ 'train_loss_avg.txt','w')
f.writelines('')
f.close()
f = open(cur_model_dir + '/'+ 'train_loss_batch.txt', 'w')
f.writelines('')
f.close()
f = open(cur_model_dir + '/'+ 'test_loss_avg.txt','w')
f.writelines('')
f.close()
else:
print('no reset , appending to former data')
if args.learning_rate_ae:
learning_rate_ae = args.learning_rate_ae
else:
learning_rate_ae = 4e-3
if args.learning_rate_color:
learning_rate_color = args.learning_rate_color
else:
learning_rate_color = 3e-3
batch_size_train = 5
batch_size_test = 5
if args.batch_size_train:
batch_size_train = args.batch_size_train
if args.batch_size_test:
batch_size_test = args.batch_size_test
X_train, X_test, y_train, y_test = generate_train_test_split(args.data_path)
train_dataloader = create_dataloader(args.data_path, X_train, y_train, batch_size_train)
test_dataloader = create_testdataloader(args.data_path, X_test, y_test, batch_size_test)
g_model = Generator()
d_model = Discriminator(args.image_dim)
# g_model = nn.DataParallel(g_model)
# d_model = nn.DataParallel(d_model)
if args.load_prev_model_disc:
d_model.load_state_dict(torch.load(args.load_prev_model_disc))
print('Discriminator loaded successfully')
if args.load_prev_model_gen:
g_model.load_state_dict(torch.load(args.load_prev_model_gen))
print('Generator loaded successfully')
# exit()
g_model = g_model.to(device)
d_model = d_model.to(device)
train(g_model, d_model, learning_rate_ae, learning_rate_color, train_dataloader, test_dataloader, now)
if __name__ == '__main__':
main()