-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
58 lines (47 loc) · 1.95 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
from colormath.color_objects import LabColor
from colormath.color_diff import delta_e_cie2000
import cv2
from skimage.io import imsave
import matplotlib.pyplot as plt
# import matplotlib.pyplot as plt
# matplotlib.pyplot.ion()
def update_readings(filename, reading):
f = open(filename, 'a')
f.writelines(reading)
f.close()
def normalize(image):
image = (image - image.min()) / (image.max() - image.min())
return image
# def make_grid(gray_img, ae_img, edge_img_in, edge_img_out):
# img_grid = np.concatenate((gray_img, ae_img, edge_img_in, edge_img_out), axis=1)
# return img_grid
def save_model_info(model_g, model_d,learning_rate_gen, learning_rate_disc, DIR, epoch_start, epoch_end, learning_rate_ae, optimizer_gen, optimizer_disc):
f = open(DIR + "model_info.txt", 'a')
model_info = 'GEN : \n' + str(model_g) + '\n' + 'Disc :\n' + str(model_d) + '\n'
metrics = 'Epoch start : {}, epoch end: {}, learning_rate_gen : {}, learning_rate_disc : {}\n'.format(str(epoch_start), str(epoch_end), str(learning_rate_gen),str(learning_rate_disc)) + '\n'
optimizer_gen_str = "Disc optimizer: \n " + str(optimizer_gen.state_dict()) + '\n'
optimizer_disc_str = "Disc optimizer: \n " + str(optimizer_disc.state_dict()) + '\n'
f.writelines(model_info)
f.writelines(metrics)
f.writelines(optimizer_gen_str)
f.writelines(optimizer_disc_str)
f.close()
def color_diff(img1, img2, img_scan):
deltas = []
for i in range(img1.shape[0]):
for j in range(img1.shape[1]):
color1_lab = LabColor(img_scan[i][j], img1[i][j][0], img1[i][j][1])
color2_lab = LabColor(img_scan[i][j], img2[i][j][0], img2[i][j][1])
delta_e = delta_e_cie2000(color1_lab, color2_lab)
deltas.append(delta_e)
return deltas
def save_batch_image_names(name, filename, batchindex, epoch=None):
val = name[0]
for n in name[1:]:
val += "," + n
if epoch is not None:
val += ',' + str(epoch)
val += ',' + str(batchindex) + '\n'
with open(filename, 'a') as f:
f.writelines(val)