This repository has been archived by the owner on Jun 20, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
HAL.h
785 lines (732 loc) · 21.8 KB
/
HAL.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
/*
This file is part of Repetier-Firmware.
Repetier-Firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Repetier-Firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Repetier-Firmware. If not, see <http://www.gnu.org/licenses/>.
This firmware is a nearly complete rewrite of the sprinter firmware
by kliment (https://github.com/kliment/Sprinter)
which based on Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
Functions in this file are used to communicate using ascii or repetier protocol.
*/
#ifndef HAL_H
#define HAL_H
/**
This is the main Hardware Abstraction Layer (HAL).
To make the firmware work with different processors and tool chains,
all hardware related code should be packed into the hal files.
*/
#include <avr/pgmspace.h>
#include <avr/io.h>
#define INLINE __attribute__((always_inline))
#if CPU_ARCH == ARCH_AVR
#include <avr/io.h>
#else
#define PROGMEM
#define PGM_P const char *
#define PSTR(s) s
#define pgm_read_byte_near(x) (*(uint8_t*)x)
#define pgm_read_byte(x) (*(uint8_t*)x)
#endif
#define PACK
#define FSTRINGVALUE(var,value) const char var[] PROGMEM = value;
#define FSTRINGVAR(var) static const char var[] PROGMEM;
#define FSTRINGPARAM(var) PGM_P var
#include <avr/eeprom.h>
#include <avr/wdt.h>
/** \brief Prescale factor, timer0 runs at.
All known Arduino boards use 64. This value is needed for the extruder timing. */
#define TIMER0_PRESCALE 64
#define ANALOG_PRESCALER _BV(ADPS0)|_BV(ADPS1)|_BV(ADPS2)
#if MOTHERBOARD==8 || MOTHERBOARD==88 || MOTHERBOARD==9 || MOTHERBOARD==92 || CPU_ARCH!=ARCH_AVR
#define EXTERNALSERIAL
#endif
#if NEW_COMMUNICATION && defined(BLUETOOTH_SERIAL) && BLUETOOTH_SERIAL > 0
#undef EXTERNALSERIAL
#define EXTERNALSERIAL
#endif
//#define EXTERNALSERIAL // Force using Arduino serial
#ifndef EXTERNALSERIAL
#undef HardwareSerial_h
#define HardwareSerial_h // Don't use standard serial console
#endif
#include <inttypes.h>
#include "Stream.h"
#ifdef EXTERNALSERIAL
// Can not change buffer size here, need add build flag -D SERIAL_RX_BUFFER_SIZE=128
//#define SERIAL_RX_BUFFER_SIZE 128
#endif
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#define COMPAT_PRE1
#endif
#if CPU_ARCH==ARCH_AVR
#include "fastio.h"
#else
#define READ(IO) digitalRead(IO)
#define WRITE(IO, v) digitalWrite(IO, v)
#define SET_INPUT(IO) pinMode(IO, INPUT)
#define SET_OUTPUT(IO) pinMode(IO, OUTPUT)
#endif
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
class InterruptProtectedBlock
{
uint8_t sreg;
public:
inline void protect()
{
cli();
}
inline void unprotect()
{
SREG = sreg;
}
inline InterruptProtectedBlock(bool later = false)
{
sreg = SREG;
if(!later)
cli();
}
inline ~InterruptProtectedBlock()
{
SREG = sreg;
}
};
#define EEPROM_OFFSET 0
#define SECONDS_TO_TICKS(s) (unsigned long)(s*(float)F_CPU)
#define ANALOG_INPUT_SAMPLE 5
// Bits of the ADC converter
#define ANALOG_INPUT_BITS 10
#define ANALOG_REDUCE_BITS 0
#define ANALOG_REDUCE_FACTOR 1
#define MAX_RAM 32767
#define bit_clear(x,y) x&= ~(1<<y) //cbi(x,y)
#define bit_set(x,y) x|= (1<<y)//sbi(x,y)
/** defines the data direction (reading from I2C device) in i2cStart(),i2cRepStart() */
#define I2C_READ 1
/** defines the data direction (writing to I2C device) in i2cStart(),i2cRepStart() */
#define I2C_WRITE 0
#if NONLINEAR_SYSTEM
// Maximum speed with 100% interrupt utilization is 27000 Hz at 16MHz cpu
// leave some margin for all the extra transformations. So we keep inside clean timings.
#define LIMIT_INTERVAL ((F_CPU/30000)+1)
#else
#define LIMIT_INTERVAL ((F_CPU/40000)+1)
#endif
typedef uint16_t speed_t;
typedef uint32_t ticks_t;
typedef uint32_t millis_t;
typedef uint8_t flag8_t;
typedef int8_t fast8_t;
typedef uint8_t ufast8_t;
#define FAST_INTEGER_SQRT
#ifndef EXTERNALSERIAL
// Implement serial communication for one stream only!
/*
HardwareSerial.h - Hardware serial library for Wiring
Copyright (c) 2006 Nicholas Zambetti. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Modified 28 September 2010 by Mark Sproul
Modified to use only 1 queue with fixed length by Repetier
*/
#define SERIAL_BUFFER_SIZE 128
#define SERIAL_BUFFER_MASK 127
#undef SERIAL_TX_BUFFER_SIZE
#undef SERIAL_TX_BUFFER_MASK
#ifdef BIG_OUTPUT_BUFFER
#define SERIAL_TX_BUFFER_SIZE 128
#define SERIAL_TX_BUFFER_MASK 127
#else
#define SERIAL_TX_BUFFER_SIZE 64
#define SERIAL_TX_BUFFER_MASK 63
#endif
struct ring_buffer
{
uint8_t buffer[SERIAL_BUFFER_SIZE];
volatile uint8_t head;
volatile uint8_t tail;
};
struct ring_buffer_tx
{
uint8_t buffer[SERIAL_TX_BUFFER_SIZE];
volatile uint8_t head;
volatile uint8_t tail;
};
class RFHardwareSerial : public Stream
{
public:
ring_buffer *_rx_buffer;
ring_buffer_tx *_tx_buffer;
volatile uint8_t *_ubrrh;
volatile uint8_t *_ubrrl;
volatile uint8_t *_ucsra;
volatile uint8_t *_ucsrb;
volatile uint8_t *_udr;
uint8_t _rxen;
uint8_t _txen;
uint8_t _rxcie;
uint8_t _udrie;
uint8_t _u2x;
public:
RFHardwareSerial(ring_buffer *rx_buffer, ring_buffer_tx *tx_buffer,
volatile uint8_t *ubrrh, volatile uint8_t *ubrrl,
volatile uint8_t *ucsra, volatile uint8_t *ucsrb,
volatile uint8_t *udr,
uint8_t rxen, uint8_t txen, uint8_t rxcie, uint8_t udrie, uint8_t u2x);
void begin(unsigned long);
void end();
virtual int available(void);
virtual int peek(void);
virtual int read(void);
virtual void flush(void);
#ifdef COMPAT_PRE1
virtual void write(uint8_t);
#else
virtual size_t write(uint8_t);
#endif
using Print::write; // pull in write(str) and write(buf, size) from Print
operator bool();
int outputUnused(void); // Used for output in interrupts
};
extern RFHardwareSerial RFSerial;
#define RFSERIAL RFSerial
//extern ring_buffer tx_buffer;
#define WAIT_OUT_EMPTY while(tx_buffer.head != tx_buffer.tail) {}
#else
#define RFSERIAL Serial
#if defined(BLUETOOTH_SERIAL) && BLUETOOTH_SERIAL > 0
#if BLUETOOTH_SERIAL == 1
#define RFSERIAL2 Serial1
#elif BLUETOOTH_SERIAL == 2
#define RFSERIAL2 Serial2
#elif BLUETOOTH_SERIAL == 3
#define RFSERIAL2 Serial3
#elif BLUETOOTH_SERIAL == 4
#define RFSERIAL2 Serial4
#elif BLUETOOTH_SERIAL == 5
#define RFSERIAL2 Serial5
#endif
#endif
#endif
class HAL
{
public:
#if FEATURE_WATCHDOG
static bool wdPinged;
#endif
HAL();
virtual ~HAL();
static inline void hwSetup(void)
{}
// return val*val
static uint16_t integerSqrt(uint32_t a);
/** \brief Optimized division
Normally the C compiler will compute a long/long division, which takes ~670 Ticks.
This version is optimized for a 16 bit dividend and recognizes the special cases
of a 24 bit and 16 bit dividend, which often, but not always occur in updating the
interval.
*/
static inline int32_t Div4U2U(uint32_t a,uint16_t b)
{
#if CPU_ARCH==ARCH_AVR
// r14/r15 remainder
// r16 counter
__asm__ __volatile__ (
"clr r14 \n\t"
"sub r15,r15 \n\t"
"tst %D0 \n\t"
"brne do32%= \n\t"
"tst %C0 \n\t"
"breq donot24%= \n\t"
"rjmp do24%= \n\t"
"donot24%=:" "ldi r16,17 \n\t" // 16 Bit divide
"d16u_1%=:" "rol %A0 \n\t"
"rol %B0 \n\t"
"dec r16 \n\t"
"brne d16u_2%= \n\t"
"rjmp end%= \n\t"
"d16u_2%=:" "rol r14 \n\t"
"rol r15 \n\t"
"sub r14,%A2 \n\t"
"sbc r15,%B2 \n\t"
"brcc d16u_3%= \n\t"
"add r14,%A2 \n\t"
"adc r15,%B2 \n\t"
"clc \n\t"
"rjmp d16u_1%= \n\t"
"d16u_3%=:" "sec \n\t"
"rjmp d16u_1%= \n\t"
"do32%=:" // divide full 32 bit
"rjmp do32B%= \n\t"
"do24%=:" // divide 24 bit
"ldi r16,25 \n\t" // 24 Bit divide
"d24u_1%=:" "rol %A0 \n\t"
"rol %B0 \n\t"
"rol %C0 \n\t"
"dec r16 \n\t"
"brne d24u_2%= \n\t"
"rjmp end%= \n\t"
"d24u_2%=:" "rol r14 \n\t"
"rol r15 \n\t"
"sub r14,%A2 \n\t"
"sbc r15,%B2 \n\t"
"brcc d24u_3%= \n\t"
"add r14,%A2 \n\t"
"adc r15,%B2 \n\t"
"clc \n\t"
"rjmp d24u_1%= \n\t"
"d24u_3%=:" "sec \n\t"
"rjmp d24u_1%= \n\t"
"do32B%=:" // divide full 32 bit
"ldi r16,33 \n\t" // 32 Bit divide
"d32u_1%=:" "rol %A0 \n\t"
"rol %B0 \n\t"
"rol %C0 \n\t"
"rol %D0 \n\t"
"dec r16 \n\t"
"brne d32u_2%= \n\t"
"rjmp end%= \n\t"
"d32u_2%=:" "rol r14 \n\t"
"rol r15 \n\t"
"sub r14,%A2 \n\t"
"sbc r15,%B2 \n\t"
"brcc d32u_3%= \n\t"
"add r14,%A2 \n\t"
"adc r15,%B2 \n\t"
"clc \n\t"
"rjmp d32u_1%= \n\t"
"d32u_3%=:" "sec \n\t"
"rjmp d32u_1%= \n\t"
"end%=:" // end
:"=&r"(a)
:"0"(a),"r"(b)
:"r14","r15","r16"
);
return a;
#else
return a/b;
#endif
}
static inline unsigned long U16SquaredToU32(unsigned int val)
{
long res;
__asm__ __volatile__ ( // 15 Ticks
"mul %A1,%A1 \n\t"
"movw %A0,r0 \n\t"
"mul %B1,%B1 \n\t"
"movw %C0,r0 \n\t"
"mul %A1,%B1 \n\t"
"clr %A1 \n\t"
"add %B0,r0 \n\t"
"adc %C0,r1 \n\t"
"adc %D0,%A1 \n\t"
"add %B0,r0 \n\t"
"adc %C0,r1 \n\t"
"adc %D0,%A1 \n\t"
"clr r1 \n\t"
: "=&r"(res),"=r"(val)
: "1"(val)
);
return res;
}
static inline unsigned int ComputeV(long timer,long accel)
{
#if CPU_ARCH==ARCH_AVR
unsigned int res;
// 38 Ticks
__asm__ __volatile__ ( // 0 = res, 1 = timer, 2 = accel %D2=0 ,%A1 are unused is free
// Result LSB first: %A0, %B0, %A1
"mul %B1,%A2 \n\t"
"mov %A0,r1 \n\t"
"mul %B1,%C2 \n\t"
"mov %B0,r0 \n\t"
"mov %A1,r1 \n\t"
"mul %B1,%B2 \n\t"
"add %A0,r0 \n\t"
"adc %B0,r1 \n\t"
"adc %A1,%D2 \n\t"
"mul %C1,%A2 \n\t"
"add %A0,r0 \n\t"
"adc %B0,r1 \n\t"
"adc %A1,%D2 \n\t"
"mul %C1,%B2 \n\t"
"add %B0,r0 \n\t"
"adc %A1,r1 \n\t"
"mul %D1,%A2 \n\t"
"add %B0,r0 \n\t"
"adc %A1,r1 \n\t"
"mul %C1,%C2 \n\t"
"add %A1,r0 \n\t"
"mul %D1,%B2 \n\t"
"add %A1,r0 \n\t"
"lsr %A1 \n\t"
"ror %B0 \n\t"
"ror %A0 \n\t"
"lsr %A1 \n\t"
"ror %B0 \n\t"
"ror %A0 \n\t"
"clr r1 \n\t"
:"=&r"(res),"=r"(timer),"=r"(accel)
:"1"(timer),"2"(accel)
: );
// unsigned int v = ((timer>>8)*cur->accel)>>10;
return res;
#else
return ((timer >> 8) * accel) >> 10;
#endif
}
// Multiply two 16 bit values and return 32 bit result
static inline uint32_t mulu16xu16to32(unsigned int a,unsigned int b)
{
uint32_t res;
// 18 Ticks = 1.125 us
__asm__ __volatile__ ( // 0 = res, 1 = timer, 2 = accel %D2=0 ,%A1 are unused is free
// Result LSB first: %A0, %B0, %A1
"clr r18 \n\t"
"mul %B2,%B1 \n\t" // mul hig bytes
"movw %C0,r0 \n\t"
"mul %A1,%A2 \n\t" // mul low bytes
"movw %A0,r0 \n\t"
"mul %A1,%B2 \n\t"
"add %B0,r0 \n\t"
"adc %C0,r1 \n\t"
"adc %D0,r18 \n\t"
"mul %B1,%A2 \n\t"
"add %B0,r0 \n\t"
"adc %C0,r1 \n\t"
"adc %D0,r18 \n\t"
"clr r1 \n\t"
:"=&r"(res),"=r"(a),"=r"(b)
:"1"(a),"2"(b)
:"r18" );
// return (long)a*b;
return res;
}
// Multiply two 16 bit values and return 32 bit result
static inline unsigned int mulu6xu16shift16(unsigned int a,unsigned int b)
{
#if CPU_ARCH == ARCH_AVR
unsigned int res;
// 18 Ticks = 1.125 us
__asm__ __volatile__ ( // 0 = res, 1 = timer, 2 = accel %D2=0 ,%A1 are unused is free
// Result LSB first: %A0, %B0, %A1
"clr r18 \n\t"
"mul %B2,%B1 \n\t" // mul hig bytes
"movw %A0,r0 \n\t"
"mul %A1,%A2 \n\t" // mul low bytes
"mov r19,r1 \n\t"
"mul %A1,%B2 \n\t"
"add r19,r0 \n\t"
"adc %A0,r1 \n\t"
"adc %B0,r18 \n\t"
"mul %B1,%A2 \n\t"
"add r19,r0 \n\t"
"adc %A0,r1 \n\t"
"adc %B0,r18 \n\t"
"clr r1 \n\t"
:"=&r"(res),"=r"(a),"=r"(b)
:"1"(a),"2"(b)
:"r18","r19" );
return res;
#else
return ((int32_t)a * b) >> 16;
#endif
}
static inline void digitalWrite(uint8_t pin,uint8_t value)
{
::digitalWrite(pin,value);
}
static inline uint8_t digitalRead(uint8_t pin)
{
return ::digitalRead(pin);
}
static inline void pinMode(uint8_t pin,uint8_t mode)
{
::pinMode(pin,mode);
}
static int32_t CPUDivU2(unsigned int divisor);
static inline void delayMicroseconds(unsigned int delayUs)
{
::delayMicroseconds(delayUs);
}
static inline void delayMilliseconds(unsigned int delayMs)
{
::delay(delayMs);
}
static inline void tone(uint8_t pin,int duration)
{
::tone(pin,duration);
}
static inline void noTone(uint8_t pin)
{
::noTone(pin);
}
static inline void eprSetByte(unsigned int pos,uint8_t value)
{
eeprom_write_byte((unsigned char *)(EEPROM_OFFSET + pos), value);
}
static inline void eprSetInt16(unsigned int pos,int16_t value)
{
eeprom_write_word((unsigned int*)(EEPROM_OFFSET + pos),value);
}
static inline void eprSetInt32(unsigned int pos,int32_t value)
{
eeprom_write_dword((uint32_t*)(EEPROM_OFFSET + pos),value);
}
static inline void eprSetFloat(unsigned int pos,float value)
{
eeprom_write_block(&value,(void*)(EEPROM_OFFSET + pos), 4);
}
static inline uint8_t eprGetByte(unsigned int pos)
{
return eeprom_read_byte ((unsigned char *)(EEPROM_OFFSET + pos));
}
static inline int16_t eprGetInt16(unsigned int pos)
{
return eeprom_read_word((uint16_t *)(EEPROM_OFFSET + pos));
}
static inline int32_t eprGetInt32(unsigned int pos)
{
return eeprom_read_dword((uint32_t*)(EEPROM_OFFSET + pos));
}
static inline float eprGetFloat(unsigned int pos)
{
float v;
eeprom_read_block(&v,(void *)(EEPROM_OFFSET + pos),4); // newer gcc have eeprom_read_block but not arduino 22
return v;
}
// Faster version of InterruptProtectedBlock.
// For safety it may only be called from within an
// interrupt handler.
static inline void allowInterrupts()
{
sei();
}
// Faster version of InterruptProtectedBlock.
// For safety it may only be called from within an
// interrupt handler.
static inline void forbidInterrupts()
{
cli();
}
static inline millis_t timeInMilliseconds()
{
return millis();
}
static inline char readFlashByte(PGM_P ptr)
{
return pgm_read_byte(ptr);
}
static inline int16_t readFlashWord(PGM_P ptr)
{
return pgm_read_word(ptr);
}
static inline void serialSetBaudrate(long baud)
{
RFSERIAL.begin(baud);
}
static inline bool serialByteAvailable()
{
return RFSERIAL.available() > 0;
}
static inline uint8_t serialReadByte()
{
return RFSERIAL.read();
}
static inline void serialWriteByte(char b)
{
RFSERIAL.write(b);
}
static inline void serialFlush()
{
RFSERIAL.flush();
}
static void setupTimer();
static void showStartReason();
static int getFreeRam();
static void resetHardware();
// SPI related functions
static void spiBegin(uint8_t ssPin = 0)
{
#if SDSS >= 0
SET_INPUT(MISO_PIN);
SET_OUTPUT(MOSI_PIN);
SET_OUTPUT(SCK_PIN);
// SS must be in output mode even it is not chip select
SET_OUTPUT(SDSS);
#if SDSSORIG >- 1
SET_OUTPUT(SDSSORIG);
#endif
// set SS high - may be chip select for another SPI device
#if defined(SET_SPI_SS_HIGH) && SET_SPI_SS_HIGH
WRITE(SDSS, HIGH);
#endif // SET_SPI_SS_HIGH
#endif
}
static inline void spiInit(uint8_t spiRate)
{
uint8_t r = 0;
for (uint8_t b = 2; spiRate > b && r < 6; b <<= 1, r++);
SET_OUTPUT(SS);
WRITE(SS,HIGH);
SET_OUTPUT(SCK);
SET_OUTPUT(MOSI_PIN);
SET_INPUT(MISO_PIN);
#ifdef PRR
PRR &= ~(1<<PRSPI);
#elif defined PRR0
PRR0 &= ~(1<<PRSPI);
#endif
// See avr processor documentation
SPCR = (1 << SPE) | (1 << MSTR) | (r >> 1);
SPSR = (r & 1 || r == 6 ? 0 : 1) << SPI2X;
}
static inline uint8_t spiReceive(uint8_t send=0xff)
{
SPDR = send;
while (!(SPSR & (1 << SPIF))) {}
return SPDR;
}
static inline void spiReadBlock(uint8_t*buf,size_t nbyte)
{
if (nbyte-- == 0) return;
SPDR = 0XFF;
for (size_t i = 0; i < nbyte; i++)
{
while (!(SPSR & (1 << SPIF))) {}
buf[i] = SPDR;
SPDR = 0XFF;
}
while (!(SPSR & (1 << SPIF))) {}
buf[nbyte] = SPDR;
}
static inline void spiSend(uint8_t b)
{
SPDR = b;
while (!(SPSR & (1 << SPIF))) {}
}
static inline void spiSend(const uint8_t* buf , size_t n)
{
if (n == 0) return;
SPDR = buf[0];
if (n > 1)
{
uint8_t b = buf[1];
size_t i = 2;
while (1)
{
while (!(SPSR & (1 << SPIF))) {}
SPDR = b;
if (i == n) break;
b = buf[i++];
}
}
while (!(SPSR & (1 << SPIF))) {}
}
static inline __attribute__((always_inline))
void spiSendBlock(uint8_t token, const uint8_t* buf)
{
SPDR = token;
for (uint16_t i = 0; i < 512; i += 2)
{
while (!(SPSR & (1 << SPIF))) {}
SPDR = buf[i];
while (!(SPSR & (1 << SPIF))) {}
SPDR = buf[i + 1];
}
while (!(SPSR & (1 << SPIF))) {}
}
// I2C Support
static void i2cSetClockspeed(uint32_t clockSpeedHz);
static void i2cInit(uint32_t clockSpeedHz);
static unsigned char i2cStart(uint8_t address);
static void i2cStartWait(uint8_t address);
static void i2cStop(void);
static void i2cWrite( uint8_t data );
static uint8_t i2cReadAck(void);
static uint8_t i2cReadNak(void);
// Watchdog support
inline static void startWatchdog()
{
#if defined (__AVR_ATmega1280__) || defined (__AVR_ATmega2560__)
WDTCSR = (1<<WDCE) | (1<<WDE); // wdt FIX for arduino mega boards
WDTCSR = (1<<WDIE) | (1<<WDP3);
#else
wdt_enable(WDTO_4S);
#endif
};
inline static void stopWatchdog()
{
wdt_disable();
}
inline static void pingWatchdog()
{
#if FEATURE_WATCHDOG
wdPinged = true;
#endif
};
inline static float maxExtruderTimerFrequency()
{
return (float)F_CPU/TIMER0_PRESCALE;
}
#if FEATURE_SERVO
static unsigned int servoTimings[4];
static void servoMicroseconds(uint8_t servo,int ms, uint16_t autoOff);
#endif
static void analogStart();
#if USE_ADVANCE
static void resetExtruderDirection();
#endif
protected:
private:
};
/*#if MOTHERBOARD==6 || MOTHERBOARD==62 || MOTHERBOARD==7
#if MOTHERBOARD!=7
#define SIMULATE_PWM
#endif
#define EXTRUDER_TIMER_VECTOR TIMER2_COMPA_vect
#define EXTRUDER_OCR OCR2A
#define EXTRUDER_TCCR TCCR2A
#define EXTRUDER_TIMSK TIMSK2
#define EXTRUDER_OCIE OCIE2A
#define PWM_TIMER_VECTOR TIMER2_COMPB_vect
#define PWM_OCR OCR2B
#define PWM_TCCR TCCR2B
#define PWM_TIMSK TIMSK2
#define PWM_OCIE OCIE2B
#else*/
#define EXTRUDER_TIMER_VECTOR TIMER0_COMPA_vect
#define EXTRUDER_OCR OCR0A
#define EXTRUDER_TCCR TCCR0A
#define EXTRUDER_TIMSK TIMSK0
#define EXTRUDER_OCIE OCIE0A
#define PWM_TIMER_VECTOR TIMER0_COMPB_vect
#define PWM_OCR OCR0B
#define PWM_TCCR TCCR0A
#define PWM_TIMSK TIMSK0
#define PWM_OCIE OCIE0B
//#endif
#endif // HAL_H