-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegment_longfiles.py
67 lines (53 loc) · 2.42 KB
/
segment_longfiles.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import wave
import webrtcvad
from pydub import AudioSegment
from pydub.silence import detect_silence
# Function to split WAV files using VAD and silence detection
def split_wav_file(input_file, output_dir, min_segment_duration=10, max_segment_duration=20, final_min_duration=3):
# Load the audio file
audio = AudioSegment.from_wav(input_file)
sample_rate = audio.frame_rate
# Detect silence using pydub
silences = detect_silence(audio, min_silence_len=300, silence_thresh=audio.dBFS - 14)
# Convert silence intervals to milliseconds for indexing
silence_intervals = [(start / 1000, end / 1000) for start, end in silences]
segments = []
current_start = 0.0
while current_start < len(audio) / 1000:
# Find the next silence point within the desired range
segment_end = None
for start, end in silence_intervals:
if current_start + min_segment_duration <= start <= current_start + max_segment_duration:
segment_end = start
break
# If no suitable silence point is found, use max_segment_duration
if segment_end is None:
segment_end = min(current_start + max_segment_duration, len(audio) / 1000)
# Extract the segment
segment = audio[current_start * 1000:segment_end * 1000]
segments.append(segment)
current_start = segment_end
# Handle the last segment
if len(segments) > 1 and len(segments[-1]) / 1000 < final_min_duration:
segments[-2] += segments[-1]
segments.pop()
# Save the segments
base_name = os.path.basename(input_file).split(".")[0]
for i, segment in enumerate(segments):
output_path = os.path.join(output_dir, f"{base_name}_part{i + 1}.wav")
segment.export(output_path, format="wav")
print(f"Saved segment: {output_path}")
# Main function to process all WAV files in a folder
def process_folder(input_folder, output_folder):
if not os.path.exists(output_folder):
os.makedirs(output_folder)
for file in os.listdir(input_folder):
if file.endswith(".wav"):
input_path = os.path.join(input_folder, file)
print(f"Processing: {input_path}")
split_wav_file(input_path, output_folder)
# Replace these paths with your input and output folder paths
input_folder = "farsdat_ctc_long"
output_folder = "farsdat_ctc_long2"
process_folder(input_folder, output_folder)