-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.class_implementation_clause_classifier.txt
64 lines (51 loc) · 1.43 KB
/
.class_implementation_clause_classifier.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
[Reference: See .index.txt for complete file listing]
Clause Classifier Implementation Instructions
=========================================
Class: ClauseClassifier
----------------------
Purpose:
Classify contract clauses into predefined categories.
Implementation Details:
1. Classification Architecture
---------------------------
- Multi-label classification
- Hierarchical classification
- Confidence scoring
2. Training Process
-----------------
- Loss functions
- Label smoothing
- Class weights
- Early stopping
3. Prediction Methods
-------------------
- Threshold optimization
- Ensemble predictions
- Confidence calibration
Code Structure:
```python
class ClauseClassifier:
def __init__(self, num_labels, model_name='bert-base-uncased'):
self.num_labels = num_labels
self.model = AutoModelForSequenceClassification.from_pretrained(
model_name,
num_labels=num_labels
)
def train(self, train_data, val_data):
"""Train classifier"""
pass
def predict_clause_type(self, clause):
"""Predict clause category"""
pass
def evaluate(self, test_data):
"""Evaluate classifier performance"""
pass
def save_classifier(self, path):
"""Save trained classifier"""
pass
```
Key Considerations:
- Handle class imbalance
- Interpretability of predictions
- Model calibration
- Performance metrics