-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.class_implementation_contract_bert.txt
61 lines (48 loc) · 1.45 KB
/
.class_implementation_contract_bert.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
[Reference: See .index.txt for complete file listing]
ContractBERT Implementation Instructions
=====================================
Class: ContractBERT
------------------
Purpose:
Fine-tune and utilize BERT for contract clause understanding.
Implementation Details:
1. Model Architecture
-------------------
- Base: BERT architecture
- Additional layers for contract-specific tasks
- Custom attention mechanisms
2. Fine-tuning Process
--------------------
- Masked Language Modeling (MLM)
- Next Sentence Prediction (NSP)
- Contract-specific objectives
3. Encoding Methods
-----------------
- Clause encoding
- Contextual embeddings
- Attention patterns
Code Structure:
```python
class ContractBERT:
def __init__(self, model_path, device='cuda'):
self.device = device
self.model = AutoModel.from_pretrained(model_path)
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
def fine_tune(self, train_data, val_data):
"""Fine-tune model on contract data"""
pass
def encode_clauses(self, clauses):
"""Encode contract clauses"""
pass
def compute_similarity(self, clause1, clause2):
"""Compute semantic similarity"""
pass
def save_model(self, path):
"""Save fine-tuned model"""
pass
```
Key Considerations:
- Gradient accumulation for large batches
- Mixed precision training
- Model compression techniques
- Evaluation metrics