-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.class_implementation_ledgar_dataset.txt
67 lines (53 loc) · 1.6 KB
/
.class_implementation_ledgar_dataset.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
[Reference: See .index.txt for complete file listing]
LEDGAR Dataset Implementation Instructions
========================================
Class: LedgarDataset
-------------------
Purpose:
Handle the LEDGAR dataset processing and management for contract clause analysis.
Implementation Details:
1. Data Loading
--------------
- Load JSON format contract clauses
- Parse metadata and labels
- Handle multi-label classification
2. Preprocessing
---------------
- Clean text (remove special characters, normalize whitespace)
- Tokenization using ContractBERT tokenizer
- Handle maximum sequence length
3. Data Splits
-------------
- Create stratified splits for training/validation
- Maintain label distribution
- Handle imbalanced classes
4. Features
----------
- Extract clause embeddings
- Create attention masks
- Generate label encodings
Code Structure:
```python
class LedgarDataset:
def __init__(self, data_path, max_length=512):
self.data_path = data_path
self.max_length = max_length
self.tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
def load_data(self):
"""Load and parse LEDGAR JSON data"""
pass
def preprocess_clauses(self):
"""Clean and preprocess clause text"""
pass
def create_splits(self):
"""Create stratified data splits"""
pass
def get_clause_embeddings(self):
"""Generate clause embeddings"""
pass
```
Key Considerations:
- Memory efficient data loading
- Proper handling of long sequences
- Robust error handling
- Caching mechanisms for processed data