-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvid_odometry.cpp
403 lines (360 loc) · 12.3 KB
/
vid_odometry.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/*
* This program is used to test the odometry.cpp code using live video feed from a pre-calibrated camera. Outputs are camera translation in x and y, rotation angle and depth of points in the image (assuming it to be same for all points)
* It also gives net pose {x-transl,y-transl,net heading} as the output.
*
* Usage ex.: ./a.out 4 2 1 1 2
*/
#include <iostream>
#include <cmath>
#include <time.h>
#include <stdio.h>
#include "opencv2/calib3d/calib3d.hpp"
//#include "opencv2/core/core.hpp"
//#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/video/tracking.hpp"
using namespace std;
using namespace cv;
float df_dDx(float Dx, float Dy, float phi, float Z, float **A, float **B, int N)
{
float sum=0;
for(int i=0;i<N;i++)
{sum=sum+2*(Dx-Z*(A[i][0]*cos(phi)-A[i][1]*sin(phi)-B[i][0]));
}
return sum;
}
float df_dDy(float Dx,float Dy, float phi, float Z, float **A, float **B, int N)
{
float sum=0;
for(int i=0;i<N;i++)
{sum=sum+2*(Dy-Z*(A[i][0]*sin(phi)+A[i][1]*cos(phi)-B[i][1]));
}
return sum;
}
float df_dphi(float Dx,float Dy, float phi, float Z, float **A, float **B, int N)
{
float sum=0;
for(int i=0;i<N;i++)
{sum=sum + 2*(Dx-Z*(A[i][0]*cos(phi)-A[i][1]*sin(phi)-B[i][0])) * ((-Z)*(-A[i][0]*sin(phi)-A[i][1]*cos(phi))) + 2*(Dy-Z*(A[i][0]*sin(phi)+A[i][1]*cos(phi)-B[i][1])) * ((-Z)*(A[i][0]*cos(phi)-A[i][1]*sin(phi)));
}
return sum;
}
float df_dZ(float Dx,float Dy, float phi, float Z, float **A, float **B, int N)
{
float sum=0;
for(int i=0;i<N;i++)
{sum=sum + 2*(Dx-Z*(A[i][0]*cos(phi)-A[i][1]*sin(phi)-B[i][0])) * ((-1)*(A[i][0]*cos(phi)-A[i][1]*sin(phi)-B[i][0])) + 2*(Dy-Z*(A[i][0]*sin(phi)+A[i][1]*cos(phi)-B[i][1])) * ((-1)*(A[i][0]*sin(phi)+A[i][1]*cos(phi)-B[i][1]));
}
return sum;
}
void ransacTest(const std::vector<cv::DMatch> matches,const std::vector<cv::KeyPoint>&keypoints1,const std::vector<cv::KeyPoint>& keypoints2,std::vector<cv::DMatch>& goodMatches,double distance,double confidence)
{
goodMatches.clear();
// Convert keypoints into Point2f
std::vector<cv::Point2f> points1, points2;
for (std::vector<cv::DMatch>::const_iterator it= matches.begin();it!= matches.end(); ++it)
{
// Get the position of old img keypoints
float x= keypoints1[it->queryIdx].pt.x;
float y= keypoints1[it->queryIdx].pt.y;
points1.push_back(cv::Point2f(x,y));
// Get the position of new img keypoints
x= keypoints2[it->trainIdx].pt.x;
y= keypoints2[it->trainIdx].pt.y;
points2.push_back(cv::Point2f(x,y));
}
// Compute F matrix using RANSAC
std::vector<uchar> inliers(points1.size(),0);
cv::Mat fundemental= cv::findFundamentalMat(cv::Mat(points1),cv::Mat(points2),inliers,FM_RANSAC,distance,confidence); // confidence probability
// extract the surviving (inliers) matches
std::vector<uchar>::const_iterator
itIn= inliers.begin();
std::vector<cv::DMatch>::const_iterator
itM= matches.begin();
// for all matches
for ( ;itIn!= inliers.end(); ++itIn, ++itM)
{
if (*itIn)
{ // it is a valid match
goodMatches.push_back(*itM);
}
}
}
int main(int argc, char** argv)
{
VideoCapture cap(1); //1 - open the non-default camera
if(!cap.isOpened()) // check if we succeeded
return -1;
cap.set(CV_CAP_PROP_FRAME_WIDTH, 320);
cap.set(CV_CAP_PROP_FRAME_HEIGHT, 240);
int ov_count=0;
float net_Dx,net_Dy,net_phi,net_Z1,net_Z2,Zsum,Rcos,Rsin;
net_Dx=0;net_Dy=0;net_phi=0;net_Z1=0;net_Z2=0;Zsum=0;
Mat frame_old,frame;
namedWindow("frames",1);
for(int i=0;i<100;i++)
{
cap >> frame; // get a new frame from camera
ov_count++;
cvtColor(frame, frame, CV_BGR2GRAY);
imshow("frames", frame);
if(waitKey(5) >= 0) break;// waitKey will bring unrqrd delay
if(ov_count>=2){
// odometry.cpp code
// new image=frame & old image= frame_old
clock_t time;
time=clock();
int N,count,feature,extract,match,outlier,solver;
float *u_old,*v_old,*u_new,*v_new;
float **A,**B;
float uo,vo,fx,fy,Z,Dx,Dy,phi,e,Dx_o,Dy_o,phi_o,Z_o,gm;
//Default option values
feature=1;
extract=1;
match=1;
outlier=1;
solver=1;
//Argument input for option selection
if (argc==6){
feature=atoi(argv[1]);
extract=atoi(argv[2]);
match=atoi(argv[3]);
outlier=atoi(argv[4]);
solver=atoi(argv[5]);
}
// Intrinsic Calibration parameters for img size 320x240
uo=157.73985;
vo=134.19819;
fx=391.54809;
fy=395.45221;
Mat img1 = frame_old;
Mat img2 = frame;
if(img1.empty() || img2.empty())
{
printf("Can't read one of the images\n");
return -1;
}
// detecting keypoints
vector<KeyPoint> keypoints1, keypoints2;
switch(feature)
{
case 1: //FAST
{int threshold=110;
FastFeatureDetector detector(threshold);
detector.detect(img1, keypoints1);
detector.detect(img2, keypoints2);
break;
}
case 2: //SURF
{SurfFeatureDetector detector(3000);
detector.detect(img1, keypoints1);
detector.detect(img2, keypoints2);
break;
}
case 3: //GFTT
{int maxCorners=200;
GoodFeaturesToTrackDetector detector(maxCorners);
detector.detect(img1, keypoints1);
detector.detect(img2, keypoints2);
break;
}
case 4: //ORB
{int maxCorners=200;
OrbFeatureDetector detector(maxCorners);
detector.detect(img1, keypoints1);
detector.detect(img2, keypoints2);
break;
}
case 5: //Harris (change threshold, presently some default threshold)
{
Ptr<FeatureDetector> detector= FeatureDetector::create("HARRIS");
detector->detect(img1, keypoints1);
detector->detect(img2, keypoints2);
}
}
// computing descriptors
Mat descriptors1, descriptors2;
switch(extract)
{
case 1: //SURF
{
SurfDescriptorExtractor extractor;
extractor.compute(img1, keypoints1, descriptors1);
extractor.compute(img2, keypoints2, descriptors2);
break;
}
case 2: //SIFT
{
SiftDescriptorExtractor extractor;
extractor.compute(img1, keypoints1, descriptors1);
extractor.compute(img2, keypoints2, descriptors2);
break;
}
case 3: //ORB
{
OrbDescriptorExtractor extractor;
extractor.compute(img1, keypoints1, descriptors1);
extractor.compute(img2, keypoints2, descriptors2);
break;
}
}
// matching descriptors
vector<DMatch> matches;
switch (match)
{
case 1: //BruteForce
{
BFMatcher matcher(NORM_L2);
matcher.match(descriptors1, descriptors2, matches);
break;
}
case 2: //Flann
{
FlannBasedMatcher matcher;
matcher.match(descriptors1, descriptors2, matches);
break;
}
}
// finding good matches
vector< DMatch > good_matches;
switch (outlier)
{
case 1:
{
double distance=40.; //quite adjustable/variable
double confidence=0.99; //doesnt affect much when changed
ransacTest(matches,keypoints1,keypoints2,good_matches,distance,confidence);
break;
}
case 2:
{
//look whether the match is inside a defined area of the image
//only 25% of maximum of possible distance
double tresholdDist = 0.25*sqrt(double(img1.size().height*img1.size().height + img1.size().width*img1.size().width));
good_matches.reserve(matches.size());
for (size_t i = 0; i < matches.size(); ++i)
{
Point2f from = keypoints1[matches[i].queryIdx].pt;
Point2f to = keypoints2[matches[i].trainIdx].pt;
//calculate local distance for each possible match
double dist = sqrt((from.x - to.x) * (from.x - to.x) + (from.y - to.y) * (from.y - to.y));
//save as best match if local distance is in specified area and on same height
if (dist < tresholdDist)
{
good_matches.push_back(matches[i]);
}
}
break;
}
case 3: //dist<2*min_dist
{
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors1.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist )
//-- PS.- radiusMatch can also be used here.
for( int i = 0; i < descriptors1.rows; i++ )
{ if( matches[i].distance < 2*min_dist )
{ good_matches.push_back( matches[i]); }
}
}
}
matches=good_matches; // update matches by good_matches
N=matches.size(); // no of matched feature points
// Old and new consecutive frames pixel coordinate
u_old=new float [N];
v_old=new float [N];
u_new=new float [N];
v_new=new float [N];
A=new float* [N]; //old normalised coordinates [X/Z Y/Z 1]
B=new float* [N]; //new normalised coordinates [Xn/Z Yn/Z 1]
for(int i=0; i<N; i++)
{
A[i] = new float [3];
B[i] = new float [3];
}
// Obtaining pixel coordinates and normalised 3D coordinates of feature points
for(size_t i = 0; i < N; i++)
{
Point2f point1 = keypoints1[matches[i].queryIdx].pt;
Point2f point2 = keypoints2[matches[i].trainIdx].pt;
u_old[i]=point1.x;
v_old[i]=point1.y;
u_new[i]=point2.x;
v_new[i]=point2.y;
A[i][0] = (u_old[i]-uo)/fx;
A[i][1] = (v_old[i]-vo)/fy;
A[i][2] = 1;
B[i][0] = (u_new[i]-uo)/fx;
B[i][1] = (v_new[i]-vo)/fy;
B[i][2] = 1;
}
// Finding least square error using Gradient-Descent or Newton-Raphson Method
// x_vect={Dx,Dy,phi,Z} and x(n+1)=x(n)-grad(f(x(n)))
// f(x)=sum{i=1 to N}[(Dx-Z(A[i][0]*cos(phi)-A[i][1]*sin(phi)-B[i][0]))^2] + sum{i=1 to N}[(Dy-Z(A[i][0]*sin(phi)+A[i][1]*cos(phi)-B[i][1]))^2]
// grad(f(x))={df/dDx,df/dDy,df/dphi,df/dZ}
//initial guess
Dx=0;Dy=0;phi=0;Z=1;
// Initial error
e=0;
for(size_t i = 0; i < N; i++){
e =e+(Dx-Z*(A[i][0]*cos(phi)-A[i][1]*sin(phi)-B[i][0]))*(Dx-Z*(A[i][0]*cos(phi)-A[i][1]*sin(phi)-B[i][0]))+(Dy-Z*(A[i][0]*sin(phi)+A[i][1]*cos(phi)-B[i][1]))*(Dy-Z*(A[i][0]*sin(phi)+A[i][1]*cos(phi)-B[i][1]));
}
// Iterate x_vect={Dx,Dy,phi,Z} using gradient functions until error<0.01
count=0;
//gm=0.005;
while(e>=0.01){
count++;
//Old x_vect={Dx,Dy,phi,Z}
Dx_o=Dx;Dy_o=Dy;phi_o=phi;Z_o=Z;
switch (solver)
{
case 1: gm=0.005; // Gradient Descent
break;
case 2: gm=1/e; // Newton-Raphson
break;
}
//New x_vect={Dx,Dy,phi,Z}
Dx=Dx_o-gm*df_dDx(Dx_o,Dy_o,phi_o,Z_o,A,B,N);
Dy=Dy_o-gm*df_dDy(Dx_o,Dy_o,phi_o,Z_o,A,B,N);
phi=phi_o-gm*df_dphi(Dx_o,Dy_o,phi_o,Z_o,A,B,N);
Z=Z_o-gm*df_dZ(Dx_o,Dy_o,phi_o,Z_o,A,B,N);
// Find error
e=0;
for(size_t i = 0; i < N; i++){
e =e+(Dx-Z*(A[i][0]*cos(phi)-A[i][1]*sin(phi)-B[i][0]))*(Dx-Z*(A[i][0]*cos(phi)-A[i][1]*sin(phi)-B[i][0]))+(Dy-Z*(A[i][0]*sin(phi)+A[i][1]*cos(phi)-B[i][1]))*(Dy-Z*(A[i][0]*sin(phi)+A[i][1]*cos(phi)-B[i][1]));
}
//cout<<e<<"\t";
}
time=clock()-time;
cout<<"N="<<N<<"\t"<<"Dx="<<Dx<<"\t"<<"Dy="<<Dy<<"\t"<<"phi="<<phi<<"\t"<<"Z="<<Z<<"\t";
cout<<"e="<<e<<"\t"<<"iteratn="<<count<<"\t";
cout<<"time="<<((float)time)/CLOCKS_PER_SEC<<"\n";
// net pose calculation (wrt starting pose)
Rcos=Dx*cos(phi)+Dy*sin(phi);
Rsin=Dx*sin(phi)-Dy*cos(phi);
net_Dx=net_Dx+Rcos*cos(net_phi)-Rsin*sin(net_phi); //net camera translation in x-direction wrt to starting pose
net_Dy=net_Dy+Rcos*sin(net_phi)+Rsin*cos(net_phi); //net camera translation in y-direction wrt to starting pose
net_phi=net_phi+phi; //net heading angle (anti-clk +ve)
Zsum=Zsum+Z;
net_Z1=Zsum/(ov_count-1); //average estimated_1 value of depth of ground from camera
if(ov_count==2) net_Z2=Z;
else net_Z2=(net_Z2+Z)/2; //average estimated_2 value of depth of ground from camera
cout<<"Dx_net="<<net_Dx<<"\t"<<"Dy_net="<<net_Dy<<"\t"<<"phi_net="<<net_phi<<"\t"<<"Z_net1="<<net_Z1<<"\t";
cout<<"Z_net2="<<net_Z2<<"\n"<<"reso"<<frame.size()<<"\n";
}
frame_old=frame.clone();
imshow("frames_old", frame_old);
if(waitKey(5) >= 0) break;// waitKey will bring unrqrd delay
}
cap.release();
// the camera will be deinitialized automatically in VideoCapture destructor
return 0;
}