diff --git a/set.mm b/set.mm index 7f934d8de5..99acff5296 100644 --- a/set.mm +++ b/set.mm @@ -214990,7 +214990,7 @@ is an important property of monoids (see ~ mndid ), and therefore also for $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= - Group sum operation for magmas + Group sum operation in magmas =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= The symbol ` gsum ` is mostly used in the context of abelian groups. @@ -216933,7 +216933,7 @@ proposition to be be proved (the first four hypotheses tell its values $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= - Group sum operation for monoids + Group sum operation in monoids =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= One important use of words is as formal composites in cases where order is @@ -735203,29 +735203,37 @@ their group (addition) operations are equal for all pairs of elements of $} ${ - $d B x y $. $d L x y $. $d R x y $. $d G y $. $d .+ x y $. $d .0. y $. - lidridid.b $e |- B = ( Base ` G ) $. - lidridid.p $e |- .+ = ( +g ` G ) $. - lidridid.o $e |- .0. = ( 0g ` G ) $. - $( If a magma has a left and right identity element, both identity elements - are equal and are equal to "the" identity element. Generalization of - statement in [Lang] p. 3: it is sufficient that "e" is a left identity - element and "e``" is a right identity element instead of both being - (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.) $) - lidridid $p |- ( ( L e. B /\ R e. B ) - -> ( A. x e. B ( ( L .+ x ) = x /\ ( x .+ R ) = x ) - -> ( L = R /\ L = .0. ) ) ) $= - ( vy co wceq wa wral wcel wi oveq2 eqeq12d rspcv cv r19.26 id oveq1 eqtr2 - w3a adantl ex syl6 adantr com23 syld simpr simpl1l weq com12 3ad2ant2 imp - 3imp eqcoms eqeq1d biimpcd com3l 3ad2ant3 imp31 ismgmid2 jca mpdan 3expib - syl5bi ) FAUAZCLZVKMZVKDCLZVKMZNABOVMABOZVOABOZNFBPZDBPZNZFDMZFGMZNZVMVOA - BUBVTVPVQWCVTVPVQUFZWAWCVTVPVQWAVTVPFDCLZDMZVQWAQVSVPWFQVRVMWFADBVKDMZVLW - EVKDVKDFCRWGUCSTUGVTVQWFWAVRVQWFWAQZQVSVRVQWEFMZWHVOWIAFBVKFMZVNWEVKFVKFD - CUDWJUCSTWIWFWAWEFDUEUHUIUJUKULUSWDWANZWAWBWDWAUMWKKBCFEGHJIVRVSVPVQWAUNW - KKUAZBPZFWLCLZWLMZWDWMWOQZWAVPVTWPVQWMVPWOVMWOAWLBAKUOZVLWNVKWLVKWLFCRWQU - CZSTUPUQUJURWDWAWMWLFCLZWLMZVQVTWAWMWTQQVPWMVQWAWTWMVQWLDCLZWLMZWAWTQVOXB - AWLBWQVNXAVKWLVKWLDCUDWRSTWAXBWTWAXAWSWLXAWSMDFDFWLCRUTVAVBUIVCVDVEVFVGVH - VIVJ $. + $d B x $. $d L x $. $d R x $. $d .+ x $. + lidrideqd.l $e |- ( ph -> L e. B ) $. + lidrideqd.r $e |- ( ph -> R e. B ) $. + lidrideqd.li $e |- ( ph -> A. x e. B ( L .+ x ) = x ) $. + lidrideqd.ri $e |- ( ph -> A. x e. B ( x .+ R ) = x ) $. + $( If there is a left and right identity element for any binary operation + (group operation) ` .+ ` , both identity elements are equal. + Generalization of statement in [Lang] p. 3: it is sufficient that "e" is + a left identity element and "e``" is a right identity element instead of + both being (two-sided) identity elements. (Contributed by AV, + 26-Dec-2023.) $) + lidrideqd $p |- ( ph -> L = R ) $= + ( co cv wceq oveq1 id eqeq12d rspcdva oveq2 eqtr3d ) AFEDKZFEABLZEDKZUAMT + FMBCFUAFMZUBTUAFUAFEDNUCOPJGQAFUADKZUAMTEMBCEUAEMZUDTUAEUAEFDRUEOPIHQS $. + + $d B x y $. $d L y $. $d R y $. $d G y $. $d .+ y $. $d .0. y $. + $d ph y $. + lidrideqd.b $e |- B = ( Base ` G ) $. + lidrideqd.p $e |- .+ = ( +g ` G ) $. + lidrididd.o $e |- .0. = ( 0g ` G ) $. + $( If there is a left and right identity element for any binary operation + (group operation) ` .+ ` , the left identity element (and therefore also + the right identity element according to ~ lidrideqd ) is equal to the + two-sided identity element. (Contributed by AV, 26-Dec-2023.) $) + lidrididd $p |- ( ph -> L = .0. ) $= + ( vy cv co wceq wral wcel oveq2 id eqeq12d rspcv mpan9 wi lidrideqd oveq1 + weq wa adantl simpl eqtrd ex syl6com com23 sylc imp ismgmid2 ) APCDGFHMON + IAGBQZDRZVASZBCTPQZCUAZGVDDRZVDSZKVCVGBVDCBPUJZVBVFVAVDVAVDGDUBVHUCZUDUEU + FAVEVDGDRZVDSZAVAEDRZVASZBCTZGESZVEVKUGLABCDEGIJKLUHVNVEVOVKVEVNVDEDRZVDS + ZVOVKUGVMVQBVDCVHVLVPVAVDVAVDEDUIVIUDUEVQVOVKVQVOUKVJVPVDVOVJVPSVQGEVDDUB + ULVQVOUMUNUOUPUQURUSUT $. $} ${ @@ -736040,10 +736048,10 @@ Group sum operation (extension 1) gsumfsupp.a $e |- ( ph -> A e. V ) $. gsumfsupp.f $e |- ( ph -> F : A --> B ) $. gsumfsupp.w $e |- ( ph -> F finSupp .0. ) $. - $( A group sum is identical with the group sum restricted to the finite - support of its index set. This corresponds to the definition of an - (infinite) product in [Lang] p. 5, two last formulas. (Contributed by - AV, 27-Dec-2023.) $) + $( A group sum of a family can be restricted to the support of that family + without changing its value, provided that that support is finite. This + corresponds to the definition of an (infinite) product in [Lang] p. 5, + last two formulas. (Contributed by AV, 27-Dec-2023.) $) gsumfsupp $p |- ( ph -> ( G gsum ( F |` I ) ) = ( G gsum F ) ) $= ( csupp co wss eqimss2i a1i gsumres ) ABCDEGFHIJLMNDHPQZFRAFUBKSTOUA $. $} @@ -736118,7 +736126,7 @@ Group multiple operation (extension) and cyclic monoids cycsubm.f $e |- F = ( x e. NN0 |-> ( x .x. A ) ) $. cycsubm.c $e |- C = ran F $. $( Characterization of an element of the set of nonnegative integer powers - of an element ` A ` of a monoid. (Contributed by AV, 28-Dec-2023.) $) + of an element ` A ` of a magma. (Contributed by AV, 28-Dec-2023.) $) cycsubmel $p |- ( X e. C <-> E. i e. NN0 X = ( i .x. A ) ) $= ( wcel cv wceq cn0 wrex co ovex crn cfv eleq2i wfn wb fvelrnb ax-mp oveq1 fnmpti fvmpt eqeq1d eqcom syl6bb rexbiia 3bitri ) IDNIGUAZNZFOZGUBZIPZFQR @@ -736126,7 +736134,7 @@ Group multiple operation (extension) and cyclic monoids VCVFUSVBIAURVEVBQGVDURBEUHLURBETUJUKVBIULUMUNUO $. $d A i $. $d B i $. $d .x. i $. - $( The set of nonnegative integer powers of an element ` A ` of a monoid + $( The set of nonnegative integer powers of an element ` A ` of a magma contains ` A ` . (Contributed by AV, 28-Dec-2023.) $) cycsubmcl $p |- ( A e. B -> A e. C ) $= ( vi wcel cv co wceq cn0 wrex c1 1nn0 wb oveq1 eqeq2d adantl mulg1 eqcomd