diff --git a/big-unifier.mm b/big-unifier.mm index 629cb9c8f7..9c936347e1 100644 --- a/big-unifier.mm +++ b/big-unifier.mm @@ -89,7 +89,7 @@ Dwight Megill (1950--2021). For more information, visit $( A three-step proof that applies ~ ax-mp to the two axioms. The proof was saved in compressed format with "SAVE PROOF theorem1 / COMPRESSED" in the - Metamath program. $) + Metamath program. (Contributed by NM, 30-Aug-2008.) $) theorem1 $p |- e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , e ( x , v ) ) $= ( wi ax-min ax-maj ax-mp ) ABBCFECFFEFFZFZKDFADFFZAFZFJMFFZKNJFFNFZFAOFFZMP @@ -98,7 +98,7 @@ Dwight Megill (1950--2021). For more information, visit $( This is the same as ~ theorem1 , except that the proof is saved in uncompressed format with "SAVE PROOF theorem1u / NORMAL" in the Metamath program. Note the size difference in the compressed versus uncompressed - proofs. $) + proofs. (Contributed by NM, 30-Aug-2008.) $) theorem1u $p |- e ( e ( e ( x , e ( y , e ( e ( e ( y , z ) , e ( u , z ) ) , u ) ) ) , v ) , e ( x , v ) ) $= wx wy wy wz wi wu wz wi wi wu wi wi wi wx wy wy wz wi wu wz wi wi wu wi wi diff --git a/demo0.mm b/demo0.mm index e89d192b27..367ed1c67c 100644 --- a/demo0.mm +++ b/demo0.mm @@ -73,7 +73,7 @@ Dwight Megill (1950--2021). For more information, visit mp $a |- Q $. $} - $( Prove a theorem. $) + $( Prove a theorem. (Contributed by NM, 1-Jan-2004.) $) th1 $p |- t = t $= $( Here is its proof: $) tt tze tpl tt weq tt tt weq tt a2 tt tze tpl tt weq tt tze tpl tt weq tt tt diff --git a/nf.mm b/nf.mm index d2c34df2bf..7611415e07 100644 --- a/nf.mm +++ b/nf.mm @@ -19058,7 +19058,7 @@ might think (incorrectly) that it could be defined by ` E! x E! y ph ` . definitions. This theorem shows that the erroneous definition can be repaired by conjoining ` A. x E* y ph ` as an additional condition. The correct definition apparently has never been published. ( ` E* ` means - "there exists at most one".) (Contributed by NM, 26-Oct-2003.) $) + "there exists at most one".) (Contributed by NM, 26-Oct-2003.) $) 2eu5 $p |- ( ( E! x E! y ph /\ A. x E* y ph ) <-> ( E. x E. y ph /\ E. z E. w A. x A. y ( ph -> ( x = z /\ y = w ) ) ) ) $= ( weu wmo wal wa wex weq 2eu1 pm5.32ri eumo adantl 2moex syl pm4.71i 2eu4