diff --git a/changes-set.txt b/changes-set.txt index 9705bf4901..d0f61c613e 100644 --- a/changes-set.txt +++ b/changes-set.txt @@ -83,6 +83,9 @@ make a github issue.) DONE: Date Old New Notes + 4-Jan-24 fimaproj [same] moved from TA's mathbox to main set.mm + 4-Jan-24 fproj [same] moved from TA's mathbox to main set.mm + 4-Jan-24 mptima [same] moved from GS's mathbox to main set.mm 29-Dec-23 uzidd [same] moved from GS's mathbox to main set.mm 28-Dec-23 eqri [same] moved from TA's mathbox to main set.mm 28-Dec-23 domep dmep moved from SF's mathbox to main set.mm diff --git a/set.mm b/set.mm index ec97caf55e..b8794a313f 100644 --- a/set.mm +++ b/set.mm @@ -50978,8 +50978,12 @@ We have not yet defined relations ( ~ df-rel ), but here we introduce a few ` F = { <. 2 , 6 >. , <. 3 , 9 >. } -> ran F = { 6 , 9 } ` ( ~ ex-rn ). Contrast with domain (defined in ~ df-dm ). For alternate definitions, see ~ dfrn2 , ~ dfrn3 , and ~ dfrn4 . The notation " ` ran ` " is used - by Enderton; other authors sometimes use script R or script W. - (Contributed by NM, 1-Aug-1994.) $) + by Enderton; other authors sometimes use script R or script W. The range + of a function is often also called "the image of the function" (see + definition in [Lang] p. ix), which can be justified by ~ imadmrn . Not + to be confused with "codomain" (see ~ df-f ), which may be a + superset/superclass of the range (see ~ frn ). (Contributed by NM, + 1-Aug-1994.) $) df-rn $a |- ran A = dom `' A $. $( Define the restriction of a class. Definition 6.6(1) of [TakeutiZaring] @@ -54243,6 +54247,15 @@ the restriction (of the relation) to the singleton containing this wa ) CEZBFZRDEGAFZQCHZDITCHZDIABJAKUAUBDSTCLMCDABNCDAOP $. $} + ${ + $d A x $. $d C x $. + $( Image of a function in maps-to notation. (Contributed by Glauco + Siliprandi, 23-Oct-2021.) $) + mptima $p |- ( ( x e. A |-> B ) " C ) = ran ( x e. ( A i^i C ) |-> B ) $= + ( cmpt cima cres crn cin df-ima resmpt3 rneqi eqtri ) ABCEZDFNDGZHABDICEZ + HNDJOPABDCKLM $. + $} + ${ $d x y A $. $( Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. @@ -74230,8 +74243,9 @@ of related elements (Contributed by Alexander van der Vekens, $( Merge two functions in parallel. Use as the second argument of a composition with a binary operation to build compound functions such as ` ( x e. ( 0 [,) +oo ) , y e. RR |-> ` - ` ( ( sqrt `` x ) + ( sin `` y ) ) ) ` . (Contributed by NM, - 17-Sep-2007.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) $) + ` ( ( sqrt `` x ) + ( sin `` y ) ) ) ` , see also ~ ex-fpar . + (Contributed by NM, 17-Sep-2007.) (Proof shortened by Mario Carneiro, + 28-Apr-2015.) $) fpar $p |- ( ( F Fn A /\ G Fn B ) -> H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) ) $= ( cvv cxp ccom cin csn ciun cop inxp inv1 xpeq12i xpsn 3eqtri wfn wa c1st @@ -74286,6 +74300,61 @@ of related elements (Contributed by Alexander van der Vekens, OWECAWMWNWDVSWMWLVRWLVRWMVMZXIVGVHVITTTVJWAVKWAWCLVTVLABWAVNVOABWDVPVQ $. $} + ${ + $d A a p $. $d A a x y $. $d F a x y $. $d G a x y $. $d H a $. + $d S a $. + fsplitfpar.h $e |- H = ( ( `' ( 1st |` ( _V X. _V ) ) + o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) + i^i ( `' ( 2nd |` ( _V X. _V ) ) + o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) ) $. + fsplitfpar.s $e |- S = ( `' ( 1st |` _I ) |` A ) $. + $( Merge two functions with a common argument in parallel. Combination of + ~ fsplit and ~ fpar . (Contributed by AV, 3-Jan-2024.) $) + fsplitfpar $p |- ( ( F Fn A /\ G Fn A ) + -> ( H o. S ) = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) $= + ( va vy wfn wa cfv cop wceq wral wcel cvv a1i adantl vp ccom cv cmpt cres + c1st cid ccnv fsplit reseq1i eqtri fveq1i fvres eqidd weq id opeq12d elex + opex fvmptd eqtrd fveq2d co df-ov cmpo fpar adantr fveq2 simpr ovmpod wss + syl5eqr eqid fnmpt mprg ssv fnssres mp2an mpbir fvco2 sylan fvmpt 3eqtr4d + fneq1i ralrimiva wb cxp crn ralrimivva fnmpo fneq1d mpbird sylancl sylibr + syl cin wrex rneqi cima mptima df-ima rnmpt 3eqtr3i elinel2 simpl opelxpd + cab wi eleq1 ex rexlimiv abssi eqsstrid fnco syl3anc eqfnfv syl2anc ) DBK + EBKLZFCUBZABAUCZDMZXTEMZNZUDZOZIUCZXSMZYFYDMZOZIBPZXRYIIBXRYFBQZLZYFCMZFM + ZYFDMZYFEMZNZYGYHYLYNYFYFNZFMZYQYLYMYRFYLYMYFARXTXTNZUDZBUEZMZYRYMUUCOYLY + FCUUBCUFUGUEUHZBUEZUUBHUUDUUABAUIUJUKULSYKUUCYROXRYKUUCYFUUAMYRYFBUUAUMYK + AYFYTYRRUUARYKUUAUNAIUOZYTYROYKUUFXTYFXTYFUUFUPZUUGUQTYFBURYRRQZYKYFYFUSZ + SUTVATVAVBYLYSYFYFFVCYQYFYFFVDYLAJYFYFBBYAJUCZEMZNZYQFRXRFAJBBUULVEZOYKAJ + BBDEFGVFZVGUUFJIUOZLZUULYQOYLUUPYAYOUUKYPUUFYAYOOUUOXTYFDVHZVGUUOUUKYPOUU + FUUJYFEVHTUQTXRYKVIZUURYQRQYLYOYPUSZSVJVLVAXRCBKZYKYGYNOUUTXRUUTIRYRUDZBU + EZBKZUVARKZBRVKZUVCUUHUVDIRIRYRUVARUVAVMVNZUUHYFRQZUUISVOBVPZRBUVAVQZVRBC + UVBCUUEUVBHUUDUVABIUIUJUKZWDZVSSBFCYFVTWAYKYHYQOXRAYFYCYQBYDUUFYAYOYBYPUU + QXTYFEVHUQYDVMZUUSWBTWCWEXRXSBKZYDBKZYEYJWFXRFBBWGZKZUUTCWHZUVOVKUVMXRUVP + UUMUVOKZXRUULRQZJBPABPUVRXRUVSAJBBUVSXRXTBQZUUJBQLLYAUUKUSSWIAJBBUULUUMRU + UMVMWJWOXRUVOFUUMUUNWKWLXRUVCUUTXRUVDUVEUVCXRUUHIRPUVDXRUUHIRUUHXRUVGLUUI + SWEUVFWOUVHUVIWMUVKWNXRUVQUAUCZYROZIRBWPZWQZUAXGZUVOUVQUVBWHZUWECUVBUVJWR + UVABWSIUWCYRUDZWHUWFUWEIRYRBWTUVABXAIUAUWCYRUWGUWGVMXBXCUKUWEUVOVKXRUWDUA + UVOUWBUWAUVOQZIUWCYFUWCQYKUWBUWHXHYFRBXDYKUWBUWHYKUWBLZUWHYRUVOQZUWIYFYFB + BYKUWBXEZUWKXFUWBUWHUWJWFYKUWAYRUVOXITWLXJWOXKXLSXMUVOBFCXNXOXRYCRQZABPUV + NXRUWLABUWLXRUVTLYAYBUSSWEABYCYDRUVLVNWOIBXSYDXPXQWL $. + + $d C a $. $d O a $. $d V a $. $d W a $. + $( Express the function operation map ` oF ` by the functions defined in + ~ fsplit and ~ fpar . (Contributed by AV, 4-Jan-2024.) $) + offsplitfpar $p |- ( ( ( F Fn A /\ G Fn A ) /\ ( F e. V /\ G e. W ) + /\ ( O Fn C /\ ( ran F X. ran G ) C_ C ) ) + -> ( O o. ( H o. S ) ) = ( F oF O G ) ) $= + ( va wfn wa wcel crn ccom cfv cmpt co cxp wss w3a cop cof wceq fsplitfpar + cv coeq2d 3ad2ant1 wf dffn3 biimpi adantr 3ad2ant3 simpl3r fnfvelrn sylan + simp1l simp1r opelxpd sseldd cofmpt eqcomi mpteq2i syl6eq cdm cin offval3 + df-ov fndm ineqan12d inidm mpteq1d sylan9eqr eqcomd 3adant3 3eqtrd ) DAMZ + EAMZNZDHOEIONZGBMZDPZEPZUAZBUBZNZUCZGFCQZQZGLALUHZDRZWLERZUDZSZQZLAWMWNGT + ZSZDEGUETZWAWBWKWQUFWHWAWJWPGLACDEFJKUGUIUJWIWQLAWOGRZSWSWILAWOBGPZGWHWAB + XBGUKZWBWCXCWGWCXCBGULUMUNUOWIWLAOZNZWFBWOWCWGWAWBXDUPXEWMWNWDWEWIVSXDWMW + DOVSVTWBWHUSAWLDUQURWIVTXDWNWEOVSVTWBWHUTAWLEUQURVAVBVCLAXAWRWRXAWMWNGVJV + DVEVFWAWBWSWTUFWHWAWBNWTWSWBWAWTLDVGZEVGZVHZWRSWSLGDEHIVIWALXHAWRWAXHAAVH + AVSVTXFAXGAADVKAEVKVLAVMVFVNVOVPVQVR $. + $} + $( The ` 2nd ` (second component of an ordered pair) function restricted to a function ` F ` is a function from ` F ` into the codomain of ` F ` . (Contributed by Alexander van der Vekens, 4-Feb-2018.) $) @@ -74654,6 +74723,60 @@ of related elements (Contributed by Alexander van der Vekens, EIXEWE $. $} + ${ + $d A a b x y z $. $d B a b x y z $. $d F a b c x y z $. + $d G a b c x y z $. $d X a b c z $. $d Y a b c z $. + fvproj.h $e |- H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) $. + ${ + fvproj.x $e |- ( ph -> X e. A ) $. + fvproj.y $e |- ( ph -> Y e. B ) $. + $( Value of a function on pairs, given two projections ` F ` and ` G ` . + (Contributed by Thierry Arnoux, 30-Dec-2019.) $) + fvproj $p |- ( ph -> ( H ` <. X , Y >. ) = <. ( F ` X ) , ( G ` Y ) >. ) + $= + ( va vb cop cfv wceq cv fveq2 co df-ov wcel opeq1d opeq2d cbvmpov eqtri + cmpo opex ovmpo syl2anc syl5eqr ) AIJPHQIJHUAZIFQZJGQZPZIJHUBAIDUCJEUCU + MUPRLMNOIJDENSZFQZOSZGQZPZUPHUNUTPUQIRURUNUTUQIFTUDUSJRUTUOUNUSJGTUEHBC + DEBSZFQZCSZGQZPZUHNODEVAUHKBCNODEVFVAURVEPVBUQRVCURVEVBUQFTUDVDUSRVEUTU + RVDUSGTUEUFUGUNUOUIUJUKUL $. + $} + + ${ + $d H a b c x y z $. $d ph a b c z $. + fimaproj.f $e |- ( ph -> F Fn A ) $. + fimaproj.g $e |- ( ph -> G Fn B ) $. + fimaproj.x $e |- ( ph -> X C_ A ) $. + fimaproj.y $e |- ( ph -> Y C_ B ) $. + $( Image of a cartesian product for a function on pairs, given two + projections ` F ` and ` G ` . (Contributed by Thierry Arnoux, + 30-Dec-2019.) $) + fimaproj $p |- ( ph -> ( H " ( X X. Y ) ) = ( ( F " X ) X. ( G " Y ) ) ) + $= + ( vz wcel cfv wceq wa vc va vb cxp cima wrex wfn wss c1st c2nd cop opex + cv wb cmpo vex op1std fveq2d op2ndd opeq12d mpompt eqtr4i fnmpti xpss12 + cmpt syl2anc sylancr simp-4r simplr opelxpi simpllr simpr sseldd fvproj + fvelimab ad5antr 1st2nd2 ad5antlr 3eqtr4d fveqeq2 rspcev wfun ad3antrrr + fnfun syl xp2nd ad3antlr fvelima r19.29a adantr xp1st adantl cvv fvmpt2 + ad2antrr sylancl fnfvima syl3anc eqeltrd eqeltrrd r19.29an bitr4d eqrdv + impbida ) AUAHIJUDZUEZFIUEZGJUEZUDZAUAUMZXFQZPUMZHRZXJSZPXEUFZXJXIQZAHD + EUDZUGXEXQUHZXKXOUNPXQXLUIRZFRZXLUJRZGRZUKZHXTYBULZHBCDEBUMZFRZCUMZGRZU + KZUOPXQYCVEKBCPDEYCYIXLYEYGUKSZXTYFYBYHYJXSYEFYEYGXLBUPZCUPZUQURYJYAYGG + YEYGXLYKYLUSURUTVAVBZVCAIDUHZJEUHZXRNOIDJEVDVFZPXQXEXJHVOVGAXPXOAXPTZUB + UMZFRZXJUIRZSZXOUBIYQYRIQZTZUUATZUCUMZGRZXJUJRZSZXOUCJUUDUUEJQZTZUUHTZY + RUUEUKZXEQZUULHRZXJSZXOUUKUUBUUIUUMYQUUBUUAUUIUUHVHZUUDUUIUUHVIZYRUUEIJ + VJVFUUKYSUUFUKYTUUGUKZUUNXJUUKYSYTUUFUUGUUCUUAUUIUUHVKUUJUUHVLUTUUKBCDE + FGHYRUUEKUUKIDYRAYNXPUUBUUAUUIUUHNVPUUPVMUUKJEUUEAYOXPUUBUUAUUIUUHOVPUU + QVMVNXPXJUURSAUUBUUAUUIUUHXJXGXHVQVRVSXNUUOPUULXEXLUULXJHVTWAVFUUDGWBZU + UGXHQZUUHUCJUFUUDGEUGZUUSAUVAXPUUBUUAMWCEGWDWEXPUUTAUUBUUAXJXGXHWFWGUCU + UGJGWHVFWIYQFWBZYTXGQZUUAUBIUFYQFDUGZUVBAUVDXPLWJDFWDWEXPUVCAXJXGXHWKWL + UBYTIFWHVFWIAXNXPPXEAXLXEQZTZXNTZXMXJXIUVFXNVLUVGXMYCXIUVGXLXQQYCWMQXMY + CSUVGXEXQXLAXRUVEXNYPWOAUVEXNVIZVMYDPXQYCWMHYMWNWPUVGXTXGQZYBXHQZYCXIQU + VGUVDYNXSIQZUVIAUVDUVEXNLWOAYNUVEXNNWOUVGUVEUVKUVHXLIJWKWEDIFXSWQWRUVGU + VAYOYAJQZUVJAUVAUVEXNMWOAYOUVEXNOWOUVGUVEUVLUVHXLIJWFWEEJGYAWQWRXTYBXGX + HVJVFWSWTXAXDXBXC $. + $} + $} + $( =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= @@ -422153,24 +422276,30 @@ varying definitions (some start from 0, others start from 1), but details). Similarly, ` F/_ x A ` is read ` x ` is not free in (class) ` A ` , see ~ df-nfc . -