-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlanguage_assistant.py
268 lines (237 loc) · 10 KB
/
language_assistant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: LicenseRef-.amazon.com.-AmznSL-1.0
# Licensed under the Amazon Software License http://aws.amazon.com/asl/
import boto3
import pyaudio
import os
import asyncio
from amazon_transcribe.client import TranscribeStreamingClient
from amazon_transcribe.handlers import TranscriptResultStreamHandler
from amazon_transcribe.model import Result, Transcript, TranscriptEvent
from pytictoc import TicToc
import concurrent
t = TicToc() #create instance of class
input_rate = 44100
target_rate = 32000
defaultframes = 1024
class textcolors:
if not os.name == 'nt':
blue = '\033[94m'
green = '\033[92m'
warning = '\033[93m'
fail = '\033[91m'
end = '\033[0m'
else:
blue = ''
green = ''
warning = ''
fail = ''
end = ''
recorded_frames = []
device_info = {}
useloopback = False
recordtime = 100
#Use module
p = pyaudio.PyAudio()
#Set default to first in list or ask Windows
try:
default_device_index = p.get_default_input_device_info()
except IOError:
default_device_index = -1
#Select Device
print (textcolors.blue + "Available devices:\n" + textcolors.end)
for i in range(0, p.get_device_count()):
info = p.get_device_info_by_index(i)
print (textcolors.green + str(info["index"]) + textcolors.end + ": \t %s \n \t %s \n" % (info["name"], p.get_host_api_info_by_index(info["hostApi"])["name"]))
if default_device_index == -1:
default_device_index = info["index"]
#Handle no devices available
if default_device_index == -1:
print (textcolors.fail + "No device available. Quitting." + textcolors.end)
exit()
#Get input or default
device_id = int(input("Choose device [" + textcolors.blue + str(default_device_index) + textcolors.end + "]: ") or default_device_index)
print ("")
#Get device info
try:
device_info = p.get_device_info_by_index(device_id)
except IOError:
device_info = p.get_device_info_by_index(default_device_index)
print (textcolors.warning + "Selection not available, using default." + textcolors.end)
#Choose between loopback or standard mode
is_input = device_info["maxInputChannels"] > 0
is_wasapi = (p.get_host_api_info_by_index(device_info["hostApi"])["name"]).find("WASAPI") != -1
if is_input:
print (textcolors.blue + "Selection is input using standard mode.\n" + textcolors.end)
else:
if is_wasapi:
useloopback = True;
print (textcolors.green + "Selection is output. Using loopback mode.\n" + textcolors.end)
else:
print (textcolors.fail + "Selection is input and does not support loopback mode. Quitting.\n" + textcolors.end)
exit()
polly = boto3.client('polly', region_name = 'us-west-2')
translate = boto3.client(service_name='translate', region_name='us-west-2', use_ssl=True)
transcription = ''
running_average = []
count = 0
total_latency = 0
async def mic_stream():
# This function wraps the raw input stream from the microphone forwarding
# the blocks to an asyncio.Queue.
loop = asyncio.get_event_loop()
input_queue = asyncio.Queue()
def callback(indata, frame_count, time_info, status):
loop.call_soon_threadsafe(input_queue.put_nowait, indata)
return (indata, pyaudio.paContinue)
# Be sure to use the correct parameters for the audio stream that matches
# the audio formats described for the source language you'll be using:
# https://docs.aws.amazon.com/transcribe/latest/dg/streaming.html
print(device_info)
#Open stream
channelcount = device_info["maxInputChannels"] if (device_info["maxOutputChannels"] < device_info["maxInputChannels"]) else device_info["maxOutputChannels"]
stream = p.open(format = pyaudio.paInt16,
channels = channelcount,
rate = int(device_info["defaultSampleRate"]),
input = True,
frames_per_buffer = defaultframes,
input_device_index = device_info["index"],
stream_callback=callback)
# Initiate the audio stream and asynchronously yield the audio chunks
# as they become available.
stream.start_stream()
print("started stream")
while True:
indata = await input_queue.get()
yield indata
class MyEventHandler(TranscriptResultStreamHandler):
async def handle_transcript_event(self, transcript_event: TranscriptEvent):
global count
global running_average
global total_latency
t.tic()
# This handler can be implemented to handle transcriptions as needed.
# In this case, we're simply printing the finished
results = transcript_event.transcript.results
print("firing outputs..", results)
if len(results) > 0:
if len(results[0].alternatives) > 0:
transcript = results[0].alternatives[0].transcript
print("transcript:", transcript)
print(results[0].channel_id)
if hasattr(results[0], "is_partial") and results[0].is_partial == False:
t.tic()
#translate only 1 channel. the other channel is a duplicate
if results[0].channel_id == "ch_0":
trans_result = translate.translate_text(
Text = transcript,
SourceLanguageCode = params['source_language'],
TargetLanguageCode = params['target_language']
)
print("translated text:" + trans_result.get("TranslatedText"))
text = trans_result.get("TranslatedText")
#For doing accuracy measurements. Remove when not required.
with open("transcribe.txt", "a", encoding='utf-8') as f:
f.write(transcript + "\n")
with open("translate.txt", "a", encoding='utf-8') as f:
f.write(text + "\n")
await loop.run_in_executor(executor, aws_polly_tts, text)
t.toc("full result sent to translate and polly :")
count += 1
total_latency += t.tocvalue()
running_average = total_latency/count
if (count % 1000 == 0) == True:
print("Average Time so far: ", running_average)
def stream_data(stream):
"""Consumes a stream in chunks to produce the response's output'"""
print("Streaming started...")
chunk = 1024
if stream:
# Note: Closing the stream is important as the service throttles on
# the number of parallel connections. Here we are using
# contextlib.closing to ensure the close method of the stream object
# will be called automatically at the end of the with statement's
# scope.
polly_stream = p.open(
format = pyaudio.paInt16,
channels = 1,
rate = 16000,
output = True,
)
#this is a blocking call..
while True:
data = stream.read(chunk)
polly_stream.write(data)
# If there's no more data to read, stop streaming
if not data:
stream.close()
polly_stream.stop_stream()
polly_stream.close()
print("got to if not data :) ")
break
# Ensure any buffered output has been transmitted and close the
# stream
# self.wfile.flush() CLOSE STEAM
print("Streaming completed.")
else:
# The stream passed in is empty
print("Nothing to stream.")
def aws_polly_tts(text):
t.tic()
response = polly.synthesize_speech(
Engine = 'standard',
LanguageCode = params['lang_code_for_polly'],
Text=text,
VoiceId = params['voice_id'],
OutputFormat = "pcm",
)
#play back into microphone
#playback asap the buffer fills-in
#https://aws.amazon.com/blogs/machine-learning/building-a-reliable-text-to-speech-service-with-amazon-polly/
byte_stream = response['AudioStream']
stream_data(byte_stream)
t.toc("Processed Polly Stream in : ")
async def transcribe():
# Setup up our client with our chosen AWS region
client = TranscribeStreamingClient(region="us-west-2")
stream = await client.start_stream_transcription(
language_code=params['lang_code_for_transcribe'],
media_sample_rate_hz=int(device_info["defaultSampleRate"]),
number_of_channels = 2,
enable_channel_identification=True,
media_encoding="pcm",
)
recorded_frames = []
async def write_chunks(stream):
# This connects the raw audio chunks generator coming from the microphone
# and passes them along to the transcription stream.
print("getting mic stream")
async for chunk in mic_stream():
t.tic()
recorded_frames.append(chunk)
await stream.input_stream.send_audio_event(audio_chunk=chunk)
t.toc("chunks passed to transcribe: ")
await stream.input_stream.end_stream()
handler = MyEventHandler(stream.output_stream)
await asyncio.gather(write_chunks(stream), handler.handle_events())
direction = 1
direction = int(input("Choose source and target language to translate. 1 for en to zh, 2 for zh to en [" + textcolors.blue + str(direction) + textcolors.end + "]: ") or default_device_index)
params = {}
if direction == 1:
params['source_language'] = "en"
params['target_language'] = "zh"
params['lang_code_for_polly'] = "cmn-CN"
params['voice_id'] = "Zhiyu"
params['lang_code_for_transcribe'] = "en-US"
elif direction == 2:
params['source_language'] = "zh"
params['target_language'] = "en"
params['lang_code_for_polly'] = "en-US"
params['voice_id'] = "Joanna"
params['lang_code_for_transcribe'] = "zh-CN"
else:
raise Exception("Languages not implemented!")
executor = concurrent.futures.ThreadPoolExecutor(max_workers=3)
loop = asyncio.get_event_loop()
loop.run_until_complete(transcribe())
loop.close()