-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnewClass.py
299 lines (240 loc) · 9.38 KB
/
newClass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
# -*- coding:utf-8 -*-
##############################
##基于社交圈的社交网络朋友推荐算法##
##code by HanJianan##
##2014.05##
##############################
#获取文本行数
def get_line_num(file_name):
count = -1
for count, line in enumerate(open(file_name, 'rU')):
pass
count += 1
return count
#全局网络类
class SocialNetwork(object):
#初始化
def __init__(self,file_name,node_num):
self.file_name=file_name #数据文件名
self.node_num=int(node_num) #网络结点个数
self.line_num=get_line_num(file_name) #网络边个数
self.list_map=self.get_map() #网络边邻接表
def get_map(self):
list_map=[[]for i in range(self.node_num)]
self.current_file=open(self.file_name)
for i in range(self.line_num):
now_line=self.current_file.readline()
words=now_line.split()
if len(words)!=0 :
start=int(words.pop(0))
end=int(words.pop(0))
if end not in list_map[start]:
list_map[start].append(end)
list_map[end].append(start)
self.current_file.close()
return list_map
#用户自我网络类
class UserNetwork(object):
def __init__(self,uid,list_map):
self.node_list=[uid] #自我网络中的结点
self.network=self.get_self_network(list_map) #用户自我网络
self.edge_similarity_dict={} #自我网络相邻边相似度字典
self.average_edge_similarity=self.get_average_edge_similarity() #计算平均邻边相似度
self.ncc_dict={} #自我网络边聚集系数字典
self.average_ncc=self.get_average_ncc() #计算平均边聚集系数
#获取用户自我网络
def get_self_network(self,list_map):
network={}
for now_node in self.node_list:
node_edge=[]
for node in list_map[now_node]:
node_edge.append(node)
if node not in self.node_list:
self.node_list.append(node)
network[now_node]=node_edge
return network
#获取网络中所有相邻边的平均相似度
def get_average_edge_similarity(self):
pair_num=0
all_similarity=0
searched_nodes=[]
for s in self.node_list:
self.edge_similarity_dict[s]={}
for e1 in self.network[s]:
for e2 in self.network[s]:
if self.edge_similarity_dict[s].has_key((e1,e2))==False:
edge_pair=EdgePair(s,e1,e2)
this_similarity=edge_pair.get_similarity(self.network)
pair_num+=1
self.edge_similarity_dict[s][(e1,e2)]=this_similarity
self.edge_similarity_dict[s][(e2,e1)]=this_similarity
all_similarity+=this_similarity
return float(all_similarity)/float(pair_num)
#获取所有边的平均边聚集系数
def get_average_ncc(self):
edge_num=0
all_ncc=0
for s in self.node_list:
for e in self.network[s]:
if self.ncc_dict.has_key((s,e))==False:
edge=Edge(s,e)
now_ncc=edge.get_ncc(self.network)
self.ncc_dict[(s,e)]=now_ncc
self.ncc_dict[(e,s)]=now_ncc
all_ncc+=now_ncc
edge_num+=1
return float(all_ncc)/float(edge_num)
#用户结点类
class User(object):
def __init__(self,uid,net):
self.uid=uid #用户id
self.net=net #用户所属关系网络
self.network=net.network
self.circles=[] #用户的朋友圈
self.friend_max_circle={} #潜在朋友的最大可能性圈子
self.node_similarity_list=[0 for i in range(len(net.node_list))] #用户与周围朋友相似性list
#基于关系的社交圈检测算法
def get_circle(self,sv,ncc): #参数:用户user,相似性阈值sv,边聚集系数ncc
social_circle=[] #初始化社交圈集合
#计算社交圈
searched_edges=[] #存储已知社团中的边
for ei in self.network[self.uid]:
if ei not in searched_edges:
searched_edges.append(ei)
edge_circle=[] #edge_circle存储当前正在检测的社团中的边
edge_circle.append(ei)
#检测ei的社交圈
for ej in edge_circle:
for ek in self.network[self.uid]:
if ek not in searched_edges and self.net.edge_similarity_dict[self.uid][(ei,ek)]>sv:
edge_circle.append(ek)
searched_edges.append(ek)
#判断是不是噪音
flag=False
if len(edge_circle)<4:
flag=True
for s in edge_circle:
for e in self.network[s]:
if self.net.ncc_dict[(s,e)]>=ncc:
flag=False
break
if flag==False:
break
if flag==False:
social_circle.append(edge_circle)
self.circles=social_circle
return social_circle
#寻找与用户有公共邻居但无边相连的顶点
def get_candidate(self):
candidate=[]
for s in self.network[self.uid]:
for e in self.network[s]:
if e not in self.network[self.uid] and e not in candidate and e!=self.uid:
candidate.append(e)
self.candidate=candidate
return candidate
#用户和用户的相似度定义
def get_similarity(self,target):
max_circle=[]
max_overlap=0
similarity=0
for c1 in self.circles:
nc1=Circle(self.uid,c1)
for c2 in target.circles:
nc2=Circle(target.uid,c2)
now_overlap=nc1.get_overlap(nc2,self.network)
similarity+=now_overlap
if now_overlap>max_overlap:
max_circle=nc1.member
self.friend_max_circle[target.uid]=max_circle
uno=self.net.node_list.index(target.uid)
self.node_similarity_list[uno]=similarity
return similarity
#推荐好友
def recommend(self,k,sv,ncc):
candidate=self.get_candidate()
for node in candidate:
now_node=User(node,self.net)
now_node.get_circle(sv,ncc)
self.get_similarity(now_node)
protential_firends=[]
for i in range(k):
uno=self.node_similarity_list.index(max(self.node_similarity_list))
uid=self.net.node_list[uno]
protential_firends.append(uid)
self.node_similarity_list[uno]=0
for friend in protential_firends:
print "The user %d may be user %d's friend"%(friend,self.uid)
print "He/She maybe belong to user %d's social circle:"%self.uid,self.friend_max_circle[friend]
#边类
class Edge(object):
def __init__(self,start,end):
self.start=start
self.end=end
#获取边聚集系数
def get_ncc(self,network):
ki=len(network[self.start]) #计算起点的度
kj=len(network[self.end]) #计算终点的度
#计算相邻公共结点
z=0
for i in network[self.start]:
if i in network[self.end]:
z+=1
if min(ki-1,kj-1)!=0:
return float(z+1)/float(min(ki-1,kj-1))
else:
return 0
#相邻边对类
class EdgePair(object):
def __init__(self,start,end1,end2):
self.start=start
self.end1=end1
self.end2=end2
#相邻边相似度函数
def get_similarity(self,network):
all_node=len(network[self.end1])+len(network[self.end2])
same_node=0
for node in network[self.end1]:
if node in network[self.end2]:
same_node+=1
return float(same_node)/float(all_node)
#社交圈类
class Circle(object):
def __init__(self,uid,member):
self.member=member
self.user=user
#重叠度定义
def get_overlap(self,target,network):
searched_nodes=[]
n=0
m=0
for k in self.member:
if k not in searched_nodes:
if k in target.member:
n+=1
searched_nodes.append(k)
for l in network[k]:
if l not in searched_nodes and l in self.member and l in target.member :
m+=1
return n*(m+1)
#print "input file name please"
file_name='0.edges'#raw_input("> ")
#print "input node number in the map please"
node_num=4050#raw_input("> ")
#print "input user please"
uid=1#raw_input("> ")
#print "input the number of the friends you want to recommmend"
friend_num=3
#测试数据
all_node=SocialNetwork(file_name, node_num)
net=UserNetwork(uid,all_node.list_map)
sv=net.average_edge_similarity
ncc=net.average_ncc
user=User(uid,net)
user.get_circle(sv,ncc)
circle_num=1
for circle in user.circles:
print "this is circle %d:"%circle_num,circle
circle_num+=1
user.get_candidate()
user.recommend(friend_num,sv,ncc)