-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
70 lines (50 loc) · 1.96 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import numpy as np
import pandas as pd
import os
from time import strftime, clock
def RMSE(true, pred):
# computes Root Mean-squared-error given true ratings and predictions
return np.sqrt(np.sum((true - pred)**2) / len(true))
def f_time(f, *args, **kwargs):
'''
Runs f on some input and prints the time elapsed until an output is returned
Arguments:
f - the function to run
*args - the positional arguments to f
*kwargs - the keyword arguments to f
Returns:
Output of running f on input
'''
start = clock()
output = f(*args, **kwargs)
print('Function runtime: %.2f s' % (clock() - start))
return output
def save_submission(model_name, pred, ordering='mu'):
'''
Saves submission on qual set given predictions
File is saved as 'submissions/*.pred'
Arguments:
model_name - a string identifying the model used to predict
pred - a list of numbers giving the rating predictions on qual
ordering - 'mu' for mu_qual.csv; 'um' for um_qual.csv
'''
filename = '_'.join([ordering, model_name, strftime('%b%d%H%M%S')]) + '.pred'
f = open(os.path.join('submissions', filename), 'w')
for p in pred:
f.write('%.3f\n' % p)
f.close()
def um_to_mu(filename, dataset=os.path.join('data', 'um_qual.csv')):
'''
Takes a submission file saved in user-movie ordering and swaps it to
movie-user ordering
Arguments:
filename - the path of the submission file for um_qual
dataset - the path of the dataset whose predictions are converted
Returns:
A list of numbers holding the predictions in movie-user order
'''
qual = pd.read_csv(dataset)
um_pred = np.loadtxt(filename, delimiter='\n')
qual['pred'] = pd.Series(um_pred, index=qual.index)
mu_qual = qual.sort_values(['Movie Number', 'User Number'])['pred'].values
return mu_qual