-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.py
61 lines (44 loc) · 1.55 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#!/usr/bin/python3
# Xavier Vasques 13/04/2021
import platform; print(platform.platform())
import sys; print("Python", sys.version)
import numpy; print("NumPy", numpy.__version__)
import scipy; print("SciPy", scipy.__version__)
import os
import numpy as np
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.neural_network import MLPClassifier
import pandas as pd
from joblib import load
from sklearn import preprocessing
def inference():
dirpath = os.getcwd()
print("dirpath = ", dirpath, "\n")
output_path = os.path.join(dirpath,'output.csv')
print(output_path,"\n")
# Load, read and normalize training data
testing = "test.csv"
data_test = pd.read_csv(testing)
y_test = data_test['# Letter'].values
X_test = data_test.drop(data_test.loc[:, 'Line':'# Letter'].columns, axis = 1)
print("Shape of the test data")
print(X_test.shape)
print(y_test.shape)
# Data normalization (0,1)
X_test = preprocessing.normalize(X_test, norm='l2')
# Models training
# Run model
clf_lda = load('Inference_lda.joblib')
print("LDA score and classification:")
print(clf_lda.score(X_test, y_test))
print(clf_lda.predict(X_test))
# Run model
clf_nn = load('Inference_NN.joblib')
print("NN score and classification:")
print(clf_nn.score(X_test, y_test))
print(clf_nn.predict(X_test))
#X_test.to_csv(output_path)
print(output_path)
pd.DataFrame(X_test).to_csv(output_path)
if __name__ == '__main__':
inference()