-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_dataframe.py
72 lines (57 loc) · 2.65 KB
/
test_dataframe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import polars as pl
from wimsey import dataframe
def test_that_describe_returns_expected_dictionary_for_df() -> None:
df = pl.DataFrame({"a": [1.2, 1.3, 1.4], "b": ["one", "two", None]})
actual = dataframe.describe(df)
assert 1.29 < actual["mean_a"] < 1.31
assert actual["null_count_b"] == 1
assert 0.332 < actual["null_percentage_b"] < 0.334
assert actual["length"] == 3
assert actual["columns"] == "a_^&^_b"
def test_that_describe_returns_expected_dictionary_for_lazy_frame() -> None:
df = pl.LazyFrame({"a": [1.2, 1.3, 1.4], "b": ["one", "two", None]})
actual = dataframe.describe(df)
assert 1.29 < actual["mean_a"] < 1.31
assert actual["null_count_b"] == 1
assert 0.332 < actual["null_percentage_b"] < 0.334
assert actual["length"] == 3
assert actual["columns"] == "a_^&^_b"
def test_that_describe_excludes_non_specified_columns() -> None:
df = pl.DataFrame({"a": [1.2, 1.3, 1.4], "b": ["one", "two", None]})
actual = dataframe.describe(df, columns=["a"])
assert "mean_a" in actual
assert "mean_b" not in actual
def test_that_describe_excludes_non_specified_metrics() -> None:
df = pl.DataFrame({"a": [1.2, 1.3, 1.4], "b": ["one", "two", None]})
actual = dataframe.describe(df, metrics=["mean", "max"])
assert "mean_a" in actual
assert "mean_b" in actual
assert "max_a" in actual
assert "max_b" in actual
assert "std_a" not in actual
assert "std_b" not in actual
def test_that_describe_excludes_non_specified_column_and_metric_combos() -> None:
df = pl.DataFrame({"a": [1.2, 1.3, 1.4], "b": ["one", "two", None]})
actual = dataframe.describe(df, columns=["a"], metrics=["count"])
assert "count_a" in actual
assert "count_b" not in actual
assert "min_a" not in actual
def test_that_profile_by_sampling_returns_list_of_dicts_of_expected_length() -> None:
df = pl.DataFrame({"a": [1.2, 1.3, 1.4], "b": ["one", "two", None]})
actual = dataframe.profile_from_sampling(df, samples=10, n=1)
assert len(actual) == 10
assert actual[0]["mean_a"] in [1.2, 1.3, 1.4]
assert actual[4]["columns"] == "a_^&^_b"
def test_that_profile_from_samples_returns_list_of_dicts_of_expected_length() -> None:
dfs = [
pl.DataFrame({"a": [1.2, 1.3, 1.4], "b": ["one", "two", None]})
for _ in range(20)
]
actual = dataframe.profile_from_samples(dfs)
assert len(actual) == 20
assert actual[10]["mean_a"] == 1.3
assert actual[4]["columns"] == "a_^&^_b"
def test_that_describe_returns_empty_dict_for_empty_dataframe() -> None:
actual = dataframe.describe(pl.DataFrame())
assert isinstance(actual, dict)
assert len(actual) == 0