-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathB3_pebble_flow.v
319 lines (268 loc) · 10.7 KB
/
B3_pebble_flow.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
(*
B3. Pebbling with Flow Networks
===============================
*)
From graph_pebbling Require Import A_primitives B1_graph_pebbling.
Section Pebble_Flow.
Context `{graph_G : Basic_Graph G, pebb_G : Pebbling_Graph G}.
Notation V := (V G).
Notation E := (E G).
Notation weight := (weight G).
Notation ω := (uncurry weight).
Notation conf := (conf G).
Notation flow := (V * V -> nat).
Notation vertices := (enum V).
Definition flux (d : V -> V * V) (f : flow) := summation (f ∘ d <$> vertices).
Definition x_in : V -> V -> V * V := (λ v, (., v)).
Definition x_out : V -> V -> V * V := (λ v, (v ,.)).
Global Arguments x_in _ _ /.
Global Arguments x_out _ _ /.
Notation inflow v := (flux (x_in v)).
Notation outflow v := (flux (x_out v)).
Notation total_inflow f := (summation ((λ v, inflow v f) <$> vertices)).
Notation total_outflow f := (summation ((λ v, outflow v f) <$> vertices)).
Definition excess (v : V) (c : conf) (f : flow) :=
c v + inflow v f - outflow v (ω .* f).
Record feasible (c : conf) (f : flow) : Prop := {
feasible_support : ∀ u v, f (u, v) > 0 -> E u v;
feasible_excess : ∀ v, outflow v (ω .* f) ≤ c v + inflow v f;
}.
Inductive flow_step : conf * flow -> conf * flow -> Prop :=
flow_one_pebble (c c' : conf) (f f' : flow) (u v : V)
(H_edge : E u v)
(H_conf : weight u v ≤ c u)
(H_flow : 1 ≤ f (u, v))
(R_conf : c' = alter S v (alter (subtract (weight u v)) u c))
(R_flow : f' = alter (subtract 1) (u, v) f) :
flow_step (c, f) (c', f').
Global Instance : Step (conf * flow) := flow_step.
Definition realized c f :=
∀ v, excess v c f ≤ c v.
Definition realizable (c : conf) (f : flow) :=
∃ c' f', (c, f) -->* (c', f') ∧ realized c' f'.
Definition unidirectional (f : flow) :=
∀ u v, f (u, v) = 0 ∨ f (v, u) = 0.
Section Equivalence.
Section Helper_lemmas.
Global Instance inj_x_in v : Inj eq eq (x_in v).
Proof. intros ? ?; cbn; congruence. Qed.
Global Instance inj_x_out v : Inj eq eq (x_out v).
Proof. intros ? ?; cbn; congruence. Qed.
Lemma flux_bound d v f :
flux d f ≥ f (d v).
Proof.
apply elem_of_summation, elem_of_list_fmap.
eexists; split; [done|apply elem_of_enum].
Qed.
Lemma weight_cases f u v :
(∀ u v, f (u, v) > 0 -> E u v) ->
f (u, v) = 0 ∨ weight u v > 1.
Proof.
intros H; dec (f (u, v) = 0); [left; done|].
assert (Hf : f (u, v) > 0) by lia.
eapply H, pebbling_weight_gt1 in Hf; right; done.
Qed.
Lemma outflow_bound v f :
(∀ u v, f (u, v) > 0 -> E u v) ->
outflow v (ω .* f) ≥ outflow v f.
Proof.
intros H; apply summation_le; intros u _; cbn.
apply (weight_cases f v u) in H; nia.
Qed.
Lemma flow_mul_alter `{distr : LeftDistr _ _ (=) Nat.mul g}
(f1 f2 : flow) e n :
f1 .* alter (g n) e f2 = alter (g (f1 e * n)) e (f1 .* f2).
Proof.
extensionality e'; cbn; dec (e = e');
simpl_alter; cbn; done.
Qed.
Lemma flux_sub d f1 f2 :
f2 .≤ f1 -> flux d (f1 .- f2) = flux d f1 - flux d f2.
Proof.
intros H; unfold flux; rewrite right_distr_compose_lift2.
apply summation_sub; intros v _; apply H.
Qed.
Section Alter.
Context `{l_domi : LeftDominant _ P (+)}.
Context `{l_comm : CondLeftComm _ (=) P g (+)}.
Variable f : flow.
Variable d : V -> V * V.
Hypothesis inj_d : Inj (=) (=) d.
Lemma flux_alter v e :
d v = e -> P (f e) -> flux d (alter g e f) = g (flux d f).
Proof.
unfold flux; rewrite ?list_fmap_compose.
intros <- H; apply foldr_alter. done.
- apply elem_of_list_fmap_1, elem_of_enum.
- apply NoDup_fmap; [done|apply NoDup_enum].
Qed.
Lemma flux_alter_ne e :
(∀ v, d v ≠ e) -> flux d (alter g e f) = flux d f.
Proof.
unfold flux; rewrite ?list_fmap_compose.
intros; f_equal; apply fmap_no_alter; intros H_in.
apply elem_of_list_fmap in H_in as (v & Hv & _); eapply H; done.
Qed.
End Alter.
End Helper_lemmas.
Ltac done_or_nia := try (done || nia).
Ltac rw_flux_ne := rewrite flux_alter_ne;
[|unfold x_in, x_out; congruence].
Ltac rw_inflow w u := rewrite flux_alter with (d:=x_in w)(v:=u); cbn;
[|apply inj_x_in|done_or_nia|done_or_nia].
Ltac rw_outflow w u := rewrite flux_alter with (d:=x_out w)(v:=u); cbn;
[|apply inj_x_out|done_or_nia|done_or_nia].
Ltac rw_conf := repeat (rewrite fn_lookup_alter in * ||
(rewrite fn_lookup_alter_ne in *; [|done_or_nia])).
Ltac flow_cases u v w :=
replace S with ((+) 1) by done; rewrite ?flow_mul_alter;
dec (w = u); [dec (v = u)|dec (w = v)]; rw_conf;
[rw_inflow u u; rw_outflow u u
|rw_outflow u v; rw_flux_ne
|rw_inflow v u; rw_flux_ne
|repeat rw_flux_ne]; cbn in *; lia || nia.
Ltac flux_le v abbr H_supp :=
unfold abbr, outflow, inflow; rewrite ?right_distr_compose_lift2;
apply summation_le; intros u _; cbn;
lia || nia || apply (weight_cases _ v u) in H_supp; nia.
Lemma flow_step_pebble_step c c' f f' :
(c, f) --> (c', f') -> c --> c'.
Proof. inversion_clear 1; eapply one_pebble_step; done. Qed.
Lemma flow_step_feasible c c' f f' :
(c, f) --> (c', f') -> feasible c f -> feasible c' f'.
Proof.
inversion_clear 1; intros [H1f H2f]; split.
- intros x y; dec ((x, y) = (u, v)); [done|]; simpl_alter; apply H1f.
- intros w; assert (Hw := H2f w); subst; flow_cases u v w.
Qed.
Lemma flow_step_excess c c' f f' w :
(c, f) --> (c', f') -> excess w c f = excess w c' f'.
Proof.
inversion 1; subst; unfold excess;
assert (H_out := flux_bound (x_out u) v (ω .* f));
assert (H_in := flux_bound (x_in v) u f); cbn in H_in, H_out, H_conf;
flow_cases u v w.
Qed.
Lemma flow_balance f :
total_inflow f = total_outflow f.
Proof.
unfold flux, compose, x_in, x_out; rewrite ?summation_lprod.
erewrite list_fmap_ext with (g:=f ∘ swap); [|intros i [] _; done].
erewrite list_fmap_ext with (g:=f)(f:=uncurry _); [|intros i [] _; done].
apply summation_Permutation, submseteq_Permutation_length_eq.
- rewrite ?fmap_length, ?prod_length; done.
- rewrite list_fmap_compose; apply submseteq_fmap, NoDup_submseteq.
+ apply NoDup_fmap. apply inj_swap. apply NoDup_lprod; apply NoDup_enum.
+ intros; apply elem_of_list_fmap in H as ([u v] & -> & _); cbn.
apply elem_of_lprod; apply elem_of_enum.
Qed.
Lemma minimum_weight_outflow u f :
outflow u f > 0 -> ∃ v, f (u, v) > 0 ∧
weight u v * outflow u f ≤ outflow u (ω .* f).
Proof.
unfold outflow; generalize vertices as vs;
induction vs as [|v vs]; cbn; intros; [lia|].
dec (summation (f ∘ x_out u <$> vs) = 0).
exists v; lia. destruct IHvs as (w & H1 & H2); [lia|].
dec (0 < f (u, v) ∧ weight u v < weight u w);
[exists v|exists w]; cbn in *; nia.
Qed.
Theorem pebble_flow_realizable c f :
feasible c f -> realizable c f.
Proof.
revert c f; apply (induction_ltof1 _ size (λ c, ∀ f, _ -> _)); unfold ltof.
intros c IH f [H1f H2f].
(* 1. Find a vertex r where the excess is not realized: inflow r > outflow r *)
destruct (decide (realized c f)) as [Hr|Hr]. exists c, f; split; done.
apply not_forall_exists in Hr as [r Hx]; unfold excess in Hx.
assert (Ho := outflow_bound r f H1f);
assert (Hr : inflow r f > outflow r f) by lia; clear Hx.
(* 2. Find complementary vertex s using flow balance: inflow s < outflow s *)
destruct (decide (∀ s, outflow s f ≤ inflow s f)) as [Hs|Hs]; [exfalso|].
{ assert (H3f := flow_balance f).
assert (H4f : total_outflow f < total_inflow f).
apply summation_lt with (x:=r); try done; apply elem_of_enum. lia. }
(* 3. Determine a minimum weight outflow edge of s. *)
apply not_forall_exists in Hs as [s Hs]; assert (H1s := H2f s);
assert (H2s : outflow s f > inflow s f) by lia; clear Hs;
assert (Hc : size c ≥ c s) by apply size_lwb.
destruct (minimum_weight_outflow s f) as (t & H1t & H2t); [lia|].
(* 4. Add one flow step and solve using induction hypothesis. *)
pose (c1 := alter S t (alter (subtract (weight s t)) s c));
pose (f1 := alter (subtract 1) (s, t) f);
assert (H_step : (c, f) --> (c1, f1)).
- apply flow_one_pebble with (u:=s)(v:=t).
apply H1f; done. nia. lia. done. done.
- destruct IH with (y:=c1)(f:=f1) as (c' & f' & H1 & H2).
+ eapply pebble_step_size, flow_step_pebble_step, H_step.
+ eapply flow_step_feasible; done.
+ exists c', f'; split; [|done]. eapply rtc_l; done.
Qed.
Theorem pebble_flow_sound t c f :
feasible c f -> solvable G t (excess t c f) c.
Proof.
intros; destruct (pebble_flow_realizable c f) as (c' & f' & H1 & H2); [done|].
exists c'; split.
- replace c with (c, f).1 by done;
replace c' with (c', f').1 by done.
apply @rtc_congruence with (R:=step); [|done].
intros [] []; apply flow_step_pebble_step.
- replace (excess t c f) with (excess t c' f'); [apply H2|].
eapply rtc_congruence with (f:=λ p, excess t p.1 p.2), unwrap_rtc in H1.
done. intros [] []; apply flow_step_excess.
Qed.
Theorem pebble_flow_complete t n c :
solvable G t n c -> ∃ f, feasible c f ∧ n ≤ excess t c f.
Proof.
intros (c' & Hc & Hn); induction Hc as [c|c1 c2 c'].
- (* Base: zero flow. *)
exists (const 0); repeat split; cbn; intros. lia. all: unfold excess, flux;
rewrite list_fmap_ext with (f:=(_.*_)∘_)(g:=const 0); cbn;
rewrite ?summation_fmap_const; lia.
- (* Step: add one flow unit. *)
apply IHHc in Hn as (f2 & [H1f2 H2f2] & Hn); clear IHHc; inversion_clear H.
exists (alter S (u, v) f2); repeat split.
+ intros x y; dec ((x, y) = (u, v)); [done|]; simpl_alter; apply H1f2.
+ intros w; assert (Hw := H2f2 w); subst; flow_cases u v w.
+ unfold excess in *; subst; flow_cases u v t.
Qed.
Theorem pebble_flow_unidirectional c f :
feasible c f -> ∃ f', feasible c f' ∧ unidirectional f' ∧
∀ v, excess v c f ≤ excess v c f'.
Proof.
intros [H_supp H_excess]; exists (f .- lift_min f (f ∘ swap));
repeat split; intros.
- apply H_supp; cbn in *; lia.
- rewrite left_distr, ?flux_sub; repeat intro; cbn; [|lia|nia].
assert (Hv := H_excess v); pose (g := lift_min f (f ∘ swap));
assert (outflow v (ω .* g) ≥ inflow v g) by flux_le v g H_supp.
unfold g in *; lia.
- intros u v; clia.
- unfold excess; rewrite left_distr, ?flux_sub; repeat intro; cbn; [|nia|lia].
pose (g := lift_min f (f ∘ swap));
assert (inflow v f ≥ inflow v g) by flux_le v g H_supp.
assert (outflow v (ω .* f) ≥ outflow v (ω .* g)) by flux_le v g H_supp.
assert (outflow v (ω .* g) ≥ inflow v g) by flux_le v g H_supp.
unfold g in *; lia.
Qed.
Corollary pebble_flow_spec t n c :
(∃ c', c -->* c' ∧ n ≤ c' t) ↔
(∃ f, feasible c f ∧ unidirectional f ∧ n ≤ excess t c f).
Proof.
split.
- intros H; apply pebble_flow_complete in H as (f & Hf & Ht).
apply pebble_flow_unidirectional in Hf as (f' & H1 & H2 & H3).
exists f'; split; [done|split]; [done|etrans]; done.
- intros (f & Hf & _ & Ht); apply (pebble_flow_sound t c) in Hf.
destruct Hf as (c' & H1 & H2); exists c'; split; [done|etrans]; done.
Qed.
End Equivalence.
End Pebble_Flow.
Notation flow G := (V G * V G -> nat).
Notation inflow v := (flux (x_in v)).
Notation outflow v := (flux (x_out v)).
Global Arguments excess _ {_}.
Global Arguments feasible _ {_}.
Global Arguments realized _ {_}.
Global Arguments realizable _ {_}.
Global Arguments unidirectional {_}.