-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathC3_divisor_lattice.v
203 lines (175 loc) · 6.77 KB
/
C3_divisor_lattice.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
(*
C3. Pebbling in a Divisor Lattice
=================================
*)
From graph_pebbling Require Import
A_primitives B_pebbling C1_basic_bounds
C2_hypercube_I C2_hypercube_II.
Section Prime_Factors.
Definition min_prime_factor (p n : nat) :=
minimal (≤) (λ p, 1 < p ∧ p ∣ n) p.
Lemma find_min_prime_factor n :
n > 1 -> ∃ p, min_prime_factor p n.
Proof.
intros Hn; destruct (list_find (λ p, 1 < p ∧ p ∣ n) (seq 0 (S n))) eqn:E.
- destruct p as [p p']; apply list_find_Some in E as (H' & [] & Hp).
apply lookup_seq in H' as [-> ?].
exists p; split; [done|]; intros q [? ?].
dec (p ≤ q); [done|exfalso]; eapply (Hp q); [|lia|done].
apply lookup_seq; split; [done|].
apply Nat.divide_pos_le in H3; lia.
- apply list_find_None in E; assert (H : ¬ (1 < n ∧ n ∣ n)).
+ eapply list.Forall_forall in E; [done|].
apply elem_of_seq; lia.
+ exfalso; apply H; done.
Qed.
End Prime_Factors.
Section Divisor_Lattice.
Variable n : nat.
Hypothesis non_zero : Premise (n > 0).
Definition divisor_lattice : graph := {|
graph_vertex := dsig (λ p, p ∣ n );
graph_edge := λ p q, `p ≠ `q ∧ `p ∣ `q;
graph_edge_weight := λ p q, `q `div` `p;
|}.
Definition top_divisor : V divisor_lattice :=
@dexist _ (λ p, p ∣ n) _ n (Nat.divide_refl n).
Global Instance divisor_lattice_vertex_fin :
Finite (V divisor_lattice).
Proof.
exists (dsig_filter _ (seq 1 n)).
- apply NoDup_dsig_filter, NoDup_seq.
- intros [p Hp]; apply elem_of_dsig_filter; cbn.
apply bool_decide_unpack in Hp; apply elem_of_seq.
apply @premise in non_zero; split; [destruct Hp; lia|].
apply Nat.divide_pos_le in Hp; lia.
Qed.
Global Instance basic_divisor_lattice :
Basic_Graph divisor_lattice.
Proof.
esplit; try typeclasses eauto.
- solve_decision.
- intros p [H _]; done.
Defined.
Global Instance pebb_divisor_lattice :
Pebbling_Graph divisor_lattice.
Proof.
split; intros [p Hp] [q Hq]; cbn; intros [H [m ->]].
apply bool_decide_unpack in Hp, Hq; apply @premise in non_zero.
rewrite Nat.div_mul; [|lia]; destruct Hq, m; nia.
Qed.
End Divisor_Lattice.
Section Divisor_Pebbling.
Section Unit_Homomorphism.
Lemma divisor_lattice_unit_hom_spec :
Graph_Hom unit_graph (divisor_lattice 1) (const (top_divisor 1)).
Proof. done. Qed.
Lemma divisor_lattice_unit_hom_surj :
@Surj unit _ (=) (const (top_divisor 1)).
Proof.
intros [p Hp]; exists (); cbn.
apply dsig_eq; cbn; apply bool_decide_unpack in Hp.
destruct Hp as [[]]; lia.
Qed.
End Unit_Homomorphism.
Section Composite_Homomorphism.
Variable p n : nat.
Hypothesis n_pos : Premise (n > 0).
Hypothesis p_pri : min_prime_factor p (p * n).
Notation P := (edge_graph Bool.lt p).
Lemma hom_composite_certificate (b : bool) (d : V (divisor_lattice n)) :
(if b then p else 1) * `d ∣ p * n.
Proof.
destruct d as [d Hd], b; cbn; apply bool_decide_unpack in Hd.
- apply Nat.mul_divide_mono_l; done.
- rewrite Nat.add_0_r; apply Nat.divide_mul_r; done.
Qed.
Definition hom_composite (f : V P * V (divisor_lattice n)) :
V (divisor_lattice (p * n)) :=
let (b, d) := f in dexist
((if b then p else 1) * `d)
(hom_composite_certificate b d).
Lemma hom_composite_surj :
Surj (=) hom_composite.
Proof.
assert (Hp : 1 < p) by (destruct p_pri as [[Hp _] _]; done).
intros [i H]; apply bool_decide_unpack in H as Hi.
destruct (decide (p ∣ i)) as [[m Hm]|].
- (* p is a factor of i. *)
rewrite Nat.mul_comm in Hm; subst.
apply Nat.mul_divide_cancel_l in Hi; [|lia].
exists (true, dexist m Hi); apply dsig_eq; done.
- (* p is not a factor of i. *)
apply Nat.gauss in Hi.
+ exists (false, dexist i Hi); apply dsig_eq; apply Nat.add_0_r.
+ (* i and p are coprime. *)
apply Nat.gcd_unique; [lia|apply Nat.divide_1_l|apply Nat.divide_1_l|].
intros q H1 H2.
dec (q = 0); [apply Nat.divide_0_l in H2; lia|].
dec (q = 1); [done|exfalso].
(* Since p is prime, any non-trivial factor is equal to p. *)
assert (Hq : q > 1 ∧ q ∣ p * n).
* split; [lia|apply Nat.divide_mul_l; done].
* apply p_pri in Hq; apply Nat.divide_pos_le in H2; [|lia].
assert (q = p) by lia; subst; done.
Qed.
Lemma hom_composite_spec :
Graph_Hom (P ☐ divisor_lattice n) (divisor_lattice (p * n)) hom_composite.
Proof.
apply @premise in n_pos as Hn; destruct p_pri as [[Hp _] _]; split.
- intros [[] [q Hq]] [[] [r Hr]]; cbn; intuition;
simplify_eq; rewrite ?Nat.add_0_r; try done; try nia.
+ apply Nat.mul_divide_cancel_l; [lia|done].
+ apply bool_decide_unpack in Hr as []; nia.
+ apply Nat.divide_factor_r.
- intros [[] [q Hq]] [[] [r Hr]]; cbn; intuition;
repeat destruct (decide _); simplify_eq; rewrite ?Nat.add_0_r; try nia.
apply Nat.div_mul; apply bool_decide_unpack in Hr as H; destruct H; lia.
Qed.
End Composite_Homomorphism.
Theorem pebbling_the_divisor_lattice n (non_zero : Premise (n > 0)) p :
(n = 1 ∨ min_prime_factor p n) ->
vertex_pebbling_bound (divisor_lattice n) n (top_divisor n) ∧
vertex_pebbling_property (divisor_lattice n) 2 p (2 * n) (top_divisor n).
Proof.
apply @premise in non_zero as Hn.
revert p; induction n as [n IH] using lt_wf_ind; intros p [->|Hp].
- split.
+ eapply @surj_hom_pebbling_bound.
* apply divisor_lattice_unit_hom_spec; done.
* apply divisor_lattice_unit_hom_surj; done.
* apply pebbling_number_unit_graph.
+ eapply @surj_hom_pebbling_property.
* apply divisor_lattice_unit_hom_spec; done.
* apply divisor_lattice_unit_hom_surj; done.
* apply pebbling_property_unit_graph.
- assert (Hm := Hp); destruct Hp as [[Hp [m E]] _];
rewrite Nat.mul_comm in E; subst n; assert (m > 0) by lia.
cut (∃ q, p ≤ q ∧ (m = 1 ∨ min_prime_factor q m)).
+ intros (q & H1q & H2q); assert (Premise (m > 0)) by done.
eapply IH in H2q as [H1m H2m]; [|nia|done].
replace (top_divisor _) with (hom_composite p m (true, top_divisor m))
by (apply dsig_eq; done); split.
* eapply (@surj_hom_vertex_pebbling_bound (_ ☐ _)).
apply hom_composite_spec; done.
apply hom_composite_surj; done.
apply vertex_pebbling_bound_arrow_prod with (l:=q); done.
* eapply (@surj_hom_vertex_pebbling_property (_ ☐ _)).
apply hom_composite_spec; done.
apply hom_composite_surj; done. rewrite Nat.mul_assoc.
apply vertex_pebbling_property_arrow_prod with (l:=q); done.
+ dec (m = 1).
* exists p; split; [|left]; done.
* destruct (find_min_prime_factor m) as [q [[]]]; [lia|exists q].
split; [|right; done]. apply Hm; split; [done|].
apply Nat.divide_mul_r; done.
Qed.
Corollary vertex_pebbling_bound_divisor_lattice n (non_zero : Premise (n > 0)) :
vertex_pebbling_bound (divisor_lattice n) n (top_divisor n).
Proof.
apply @premise in non_zero as H; dec (n = 1).
- apply pebbling_the_divisor_lattice with (p:=0); left; done.
- edestruct (find_min_prime_factor n) as [p Hp]; [lia|].
eapply pebbling_the_divisor_lattice; right; done.
Qed.
End Divisor_Pebbling.