-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_deep_learning.R
executable file
·101 lines (82 loc) · 2.85 KB
/
03_deep_learning.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
load("data/employee_churn_data.RData")
library(tidyverse)
head(df)
df <- df %>% mutate(ID = 1:nrow(df)) %>%
select(ID, department:left)
cat_var <- colnames(df[,c(2, 3, 6, 9)])
new_df_w_dumm <- fastDummies::dummy_cols(df, select_columns = cat_var,
remove_first_dummy = TRUE,
remove_selected_columns = TRUE)
new_df_w_dumm <- new_df_w_dumm %>%
mutate(left = as.numeric(left) -1)
set.seed(123)
train <- new_df_w_dumm %>% sample_frac(.8)
test <- anti_join(new_df_w_dumm, train, by = 'ID')
x_train <- train %>% select(review:avg_hrs_month,
department_engineering:bonus_received)
x_test <- test %>% select(review:avg_hrs_month,
department_engineering:bonus_received)
y_train <- train %>% select(left)
y_test <- test %>% select(left)
library(reticulate)
conda_list()
use_condaenv("r-reticulate")
library(keras)
y_train <- to_categorical(y_train, 2)
y_test <- to_categorical(y_test, 2)
x_train <- as.matrix(x_train)
y_train <- as.matrix(y_train)
x_test <- as.matrix(x_test)
y_test <- as.matrix(y_test)
build_model <- function() {
model <- keras_model_sequential()
model %>%
layer_dense(units = 18,
input_shape = dim(x_train)[2],
kernel_regularizer = regularizer_l2(l = 0.001)) %>%
layer_activation_relu() %>%
layer_dense(units = 100,
activation = 'relu',
kernel_regularizer = regularizer_l1_l2(l1 = 0.01, l2 = 0.01)) %>%
layer_dropout(0.2) %>%
layer_dense(units = 200,
activation = 'relu',
kernel_regularizer = regularizer_l1_l2(l1 = 0.01, l2 = 0.01)) %>%
layer_dropout(0.4) %>%
layer_dense(units = 80,
activation = 'relu',
kernel_regularizer = regularizer_l1_l2(l1 = 0.01, l2 = 0.01)) %>%
layer_dropout(0.5) %>%
layer_dense(units = 40,
activation = 'relu',
kernel_regularizer = regularizer_l1_l2(l1 = 0.01, l2 = 0.01)) %>%
layer_dense(units = 2, activation = "softmax")
model %>% compile(
loss = "categorical_crossentropy",
optimizer = "adam",
metrics = tensorflow::tf$keras$metrics$AUC()
)
model
}
model <- build_model()
model %>% summary()
print_dot_callback <- callback_lambda(
on_epoch_end = function(epoch, logs) {
if (epoch %% 80 == 0) cat("\n")
cat(".")
}
)
early_stop <- callback_early_stopping(monitor = "val_loss", patience = 20)
epochs <- 100
model_history <- model %>% fit(
x_train,
y_train,
epochs = epochs,
validation_split = 0.2,
verbose = 1,
callbacks = list(early_stop, print_dot_callback)
)
evaluate(model, x_test, y_test)
plot(model_history) + theme_bw() + xlab("") +
labs(title = "Feed forward deep neural network",
caption = "AUC | Binary classification in the test set = .70")