-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgo_yf.py
60 lines (50 loc) · 2.28 KB
/
algo_yf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import yfinance as yf
def buy_signal(symbol, under_value=None):
closing_data = compute_emas_buy(symbol, under_value=under_value)
if closing_data is not False:
today = closing_data.iloc[-1]
over_50 = today['Close'] > today['EMA_50']
over_100 = today['EMA_50'] > today['EMA_100']
under_150 = today['EMA_100'] < today['EMA_150']
signal = over_50 and over_100 and under_150
return signal
else:
return False
def download_yf_data(symbols, multithread=True):
symbol_string = ' '.join(symbols)
data = yf.download(symbol_string, period='1y', actions=False, group_by='ticker', threads=multithread)
return data
def compute_emas_buy(stock, under_value=None):
if under_value is not None:
if stock['Close'].iloc[-1] > under_value:
return False
closing_data = stock.copy()
closing_data['EMA_50'] = _calculate_ema(closing_data)['Close']
closing_data['EMA_100'] = _calculate_ema(closing_data, span=100)['Close']
closing_data['EMA_150'] = _calculate_ema(closing_data, span=150)['Close']
closing_data = closing_data[['Close', 'EMA_50', 'EMA_100', 'EMA_150']]
return closing_data
def compute_emas_sell(symbol):
stock_data = yf.Ticker(symbol)
closing_data = stock_data.history(period='1y', actions=False)
closing_data['EMA_20'] = _calculate_ema(closing_data, span=20)['Close']
closing_data['EMA_100'] = _calculate_ema(closing_data, span=100)['Close']
closing_data['EMA_150'] = _calculate_ema(closing_data, span=150)['Close']
closing_data = closing_data[['Close', 'EMA_20', 'EMA_100', 'EMA_150']]
return closing_data
def _calculate_ema(stock_data, span=50):
ewm = stock_data.ewm(span=span, min_periods=0, adjust=False, ignore_na=False).mean()
return ewm
def get_stock_info(symbol):
stock_data = yf.Ticker(symbol)
try:
info = stock_data.info
except Exception:
return ['', '', None, None, None]
return [info['longBusinessSummary'], info['sector'], info['forwardEps'], info['forwardPE'], info['priceToBook']]
def sell_signal(symbol):
closing_data = compute_emas_sell(symbol)
today = closing_data.tail(1)
return today['EMA_20'] < today['EMA_150'] and today['EMA_20'] < today['EMA_150']
if __name__ == "__main__":
buy_signal('MSFT')