-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy patheval_sim.py
139 lines (115 loc) · 7.02 KB
/
eval_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import os
import time
from scipy.io import loadmat, savemat
import numpy as np
import logging
import datetime
import collections
import torch
from torch.utils.data import DataLoader
import network
import loaders
from utils import get_otsu_regions
def main():
start_time = time.time()
# parse the input
parser = argparse.ArgumentParser(description='DeepSIF Model')
parser.add_argument('--workers', default=0, type=int, help='number of data loading workers')
parser.add_argument('--batch_size', default=64, type=int, help='batch size')
parser.add_argument('--device', default='cuda:0', type=str, help='device running the code')
parser.add_argument('--dat', default='SpikeEEGBuildEval', type=str, help='data loader')
parser.add_argument('--test', default='test_sample_source2.mat', type=str, help='test dataset name')
parser.add_argument('--model_id', type=int, default=75, help='model id')
parser.add_argument('--resume', default='', type=str, help='epoch id to resume')
parser.add_argument('--fwd', default='leadfield_75_20k.mat', type=str, help='forward matrix to use')
parser.add_argument('--info', default='', type=str, help='other information regarding this model')
parser.add_argument('--snr_rsn_ratio', default=0, type=float, help='ratio between real noise and gaussian noise')
parser.add_argument('--lfreq', default=-1, type=int, help='filter EEG data to perform narrow-band analysis')
parser.add_argument('--hfreq', default=-1, type=int, help='filter EEG data to perform narrow-band analysis')
args = parser.parse_args()
# ======================= PREPARE PARAMETERS =====================================================================================================
use_cuda = (False) and torch.cuda.is_available() # Only use GPU during training
device = torch.device(args.device if use_cuda else "cpu")
data_root = 'source/Simulation/'
dis_matrix = loadmat('anatomy/dis_matrix_fs_20k.mat')['raw_dis_matrix']
result_root = 'model_result/{}_the_model'.format(args.model_id)
if not os.path.exists(result_root):
print("ERROR: No model {}".format(args.model_id))
return
fwd = loadmat('anatomy/{}'.format(args.fwd))['fwd']
# ================================== LOAD DATA ===================================================================================================
test_data = loaders.__dict__[args.dat](data_root + args.test, fwd=fwd,
args_params={'snr_rsn_ratio': args.snr_rsn_ratio,
'lfreq': args.lfreq, 'hfreq': args.hfreq})
test_loader = DataLoader(test_data, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True, shuffle=False)
# =============================== LOAD MODEL =====================================================================================================
if args.resume:
fn = fn = os.path.join(result_root, 'epoch_' + args.resume)
else:
fn = os.path.join(result_root, 'model_best.pth.tar')
print("=> Load checkpoint", fn)
if os.path.isfile(fn):
print("=> Found checkpoint '{}'".format(fn))
checkpoint = torch.load(fn, map_location=torch.device('cpu'))
best_result = checkpoint['best_result']
net = network.__dict__[checkpoint['arch']](*checkpoint['attribute_list']).to(device) # redefine the weights architecture
net.load_state_dict(checkpoint['state_dict'], strict=False)
print("=> Loaded checkpoint {}, current results: {}".format(fn, best_result))
# Define logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
handler = logging.FileHandler(result_root + '/outputs_{}.log'.format(checkpoint['arch']))
handler.setLevel(logging.INFO)
logger.addHandler(handler)
logger.info("=================== Evaluation mode: {} ====================================".format(datetime.datetime.now()))
logger.info("Testing data is {}".format(args.test))
# Save every parameters in args
for v in args.__dict__:
if v not in ['workers', 'train', 'test']:
logger.info('{} is {}'.format(v, args.__dict__[v]))
else:
print("ERROR: no checkpoint found")
return
print('Number of parameters:', net.count_parameters())
print('Prepare time:', time.time() - start_time)
# =============================== EVALUATION =====================================================================================================
net.eval()
eval_dict = collections.defaultdict(list)
eval_dict['all_out'] = [] # DeepSIF output
eval_dict['all_nmm'] = [] # Ground truth source activity
eval_dict['all_regions'] = [] # DeepSIF identified source regions
eval_dict['all_loss'] = 0 # MSE Loss
criterion = torch.nn.MSELoss(reduction='sum')
with torch.no_grad():
for batch_idx, sample_batch in enumerate(test_loader):
if batch_idx > 0:
break
data = sample_batch['data'].to(device, torch.float)
nmm = sample_batch['nmm'].numpy()
label = sample_batch['label'].numpy()
model_output = net(data)
out = model_output['last']
# calculate loss function
# nmm_torch = sample_batch['nmm'].to(device, torch.float)
# eval_dict['all_loss'] = eval_dict['all_loss'] + criterion(out, nmm_torch).data.numpy()
# ----- SAVE EVERYTHING TO EXAMINE LATER (not suitable for large test dataset) -------
# eval_dict['all_out'].append(out.cpu().numpy())
# eval_dict['all_eeg'].append(data.cpu().numpy())
# ----- ONLY SAVE IDENTIFIED REGION --------------------------------------------------
eval_results = get_otsu_regions(out.cpu().numpy(), label)
# calculate metrics as a sanity check
# eval_results = get_otsu_regions(out.cpu().numpy(), label, args_params = {'dis_matrix': dis_matrix})
# eval_dict['precision'].extend(eval_results['precision'])
# eval_dict['recall'].extend(eval_results['recall'])
# eval_dict['le'].extend(eval_results['le'])
eval_dict['all_regions'].extend(eval_results['all_regions'])
eval_dict['all_out'].extend(eval_results['all_out'])
# ------------------------------------------------------------------------------------
for kk in range(out.size(0)):
eval_dict['all_nmm'].append(nmm[kk, :, label[kk, :, 0]]) # Only save activity in the center region
# lb = label[kk, :, :] # Save activities in all source regions
# eval_dict['all_nmm'].append(nmm[kk, :, lb[np.logical_not(ispadding(lb))]])
savemat(fn + '_preds_{}{}.mat'.format(args.test[:-4], args.info), eval_dict)
if __name__ == '__main__':
main()