diff --git a/README.md b/README.md index b8b99ed..04b742b 100644 --- a/README.md +++ b/README.md @@ -34,22 +34,26 @@ getExampleData("DensePatchA") LASfile = system.file("extdata", "DensePatchA.laz", package="spanner") las = readTLSLAS(LASfile, select = "xyzc", "-filter_with_voxel 0.01") # Don't forget to make sure the las object has a projection -# projection(las) <- sp::CRS("+init=epsg:26912") +# projection(las) = sp::CRS("+init=epsg:26912") # pre-process the example lidar dataset by classifying the ground points # using lidR::csf(), normalizing it, and removing outlier points # using lidR::ivf() -las <- classify_ground(las, csf(sloop_smooth = FALSE, +las = classify_ground(las, csf(sloop_smooth = FALSE, class_threshold = 0.5, cloth_resolution = 0.5, rigidness = 1L, iterations = 500L, time_step = 0.65)) -las <- normalize_height(las, tin()) -las <- classify_noise(las, ivf(0.25, 3)) -las <- filter_poi(las, Classification != LASNOISE) +las = normalize_height(las, tin()) +las = classify_noise(las, ivf(0.25, 3)) +las = filter_poi(las, Classification != LASNOISE) # plot the non-ground points, colored by height plot(filter_poi(las, Classification!=2), color="Z", trim=30) +# perform a deep inspection of the las object. If you see any +# red text, you may have issues! +las_check(las) + # find individual tree locations and attribute data myTreeLocs = get_raster_eigen_treelocs(las = las, res = 0.05, pt_spacing = 0.0254, @@ -78,5 +82,5 @@ myTreeGraph = segment_graph(las = las, tree.locations = myTreeLocs, k = 50, output_location = getwd()) # plot it in 3d colored by treeID -plot(myTreeGraph, color="treeID") +plot(myTreeGraph, color = "treeID") ```